Change search
ReferencesLink to record
Permanent link

Direct link
Digital Predistortion of Single and Concurrent Dual BandRadio Frequency GaN Amplifiers with Strong NonlinearMemory Effects
KTH, School of Electrical Engineering (EES), Signal Processing.ORCID iD: 0000-0003-1183-6666
KTH, School of Electrical Engineering (EES), Signal Processing.ORCID iD: 0000-0002-2718-0262
ATM, University of Gävle.
2016 (English)In: IEEE transactions on microwave theory and techniques, ISSN 0018-9480, E-ISSN 1557-9670Article in journal (Refereed) Submitted
Abstract [en]

Electrical anomalies due to trapping effects in Gallium Nitride (GaN) power amplifiers (PAs)give rise to long-term or strong memory effects. We propose novel models based on infinite impulse response (IIR) fixed pole expansion techniques for the behavioral modeling and digital pre-distortion of single-input-single-output (SISO) and concurrent dual-bandGaN PAs. Experimental results show that the proposed models outperform the corresponding finite impulse response (FIR) models by up to 17 dB for the same number of model parameters. For the linearization of a SISO GaN PA the proposed models give adjacent channel power ratios (ACPRs) that are 7 to 17 dBlower than the FIR models. For the concurrent dual-band case, the proposed models give ACPRs that are 9to 14 dB lower than the FIR models.

Place, publisher, year, edition, pages
IEEE Press, 2016.
National Category
Signal Processing
Identifiers
URN: urn:nbn:se:kth:diva-197368OAI: oai:DiVA.org:kth-197368DiVA: diva2:1052016
Note

QC 20161205

Available from: 2016-12-05 Created: 2016-12-05 Last updated: 2016-12-05Bibliographically approved
In thesis
1. Characterization and Linearization of Multi-band Multi-channel RF Power Amplifiers
Open this publication in new window or tab >>Characterization and Linearization of Multi-band Multi-channel RF Power Amplifiers
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The World today is deeply transformed by the advancement in wireless technology. The envision of a smart society where interactions between physical and virtual dimensions of life are intertwined and where human interaction is mediated by machines, e.g., smart phones, demands increasingly more data traffic. This continual increase in data traffic requires re-designing of the wireless technologies for increased system capacity and flexibility. In this thesis, aspects related to behavioral modeling, characterization, and linearization of multi-channel/band power amplifiers (PAs) are discussed.

When building a model of any system, it is advantageous to take into account the knowledge of the physics of the system and include into the model. This approach could help to improve the model performance. In this context, three novel behavioral models and DPD schemes for nonlinear MIMO transmitters are proposed.

To model and compensate distortions in GaN based RF PAs in presence of long-term memory effects, novel models for SISO and concurrent dual-band PAs are proposed. These models are based on a fixed pole expansion technique and have infinite impulse response. They show substantial performance improvement. A behavioral model based on the physical knowledge of the concurrent dual-band PA is derived, and its performance is investigated both for behavioral modeling and compensation of nonlinear distortions.

Two-tone characterization is a fingerprint method for the characterization of memory effects in dynamic nonlinear systems. In this context, two novel techniques are proposed. The first technique is a dual two-tone characterization technique to characterize the memory effects of self- and cross-modulation products in concurrent dual-band transmitter. The second technique is for the characterization and analysis of self- and cross-Volterra kernels of nonlinear 3x3 MIMO systems using three-tone signals.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2017. 59 p.
Series
TRITA-EE, ISSN 1653-5146 ; 2016:185
National Category
Signal Processing
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-197266 (URN)978-91-7729-198-5 (ISBN)
Public defence
2017-02-24, 99133, Kungsbäcksvägen 47, Gävle, 10:15 (English)
Opponent
Supervisors
Note

QC 20161205

Available from: 2016-12-05 Created: 2016-11-30 Last updated: 2016-12-05Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Amin, ShoaibHändel, Peter
By organisation
Signal Processing
In the same journal
IEEE transactions on microwave theory and techniques
Signal Processing

Search outside of DiVA

GoogleGoogle Scholar

Total: 48 hits
ReferencesLink to record
Permanent link

Direct link