Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Telepresence Mechatronic Robot (TEBoT): Towards the design and control of socially interactive bio-inspired system
KTH, School of Computer Science and Communication (CSC), Media Technology and Interaction Design, MID.ORCID iD: 0000-0003-3779-5647
2016 (English)In: Journal of Intelligent & Fuzzy Systems, ISSN 1064-1246, E-ISSN 1875-8967, Vol. 31, no 5, 2597-2610 p.Article in journal (Refereed) Published
Abstract [en]

Socially interactive systems are embodied agents that engage in social interactions with humans. From a design perspective, these systems are built by considering a biologically inspired design (Bio-inspired) that can mimic and simulate human-like communication cues and gestures. The design of a bio-inspired system usually consists of (i) studying biological characteristics, (ii) designing a similar biological robot, and (iii) motion planning, that can mimic the biological counterpart. In this article, we present a design, development, control-strategy and verification of our socially interactive bio-inspired robot, namely - Telepresence Mechatronic Robot (TEBoT). The key contribution of our work is an embodiment of a real human-neck movements by, i) designing a mechatronic platform based on the dynamics of a real human neck and ii) capturing the real head movements through our novel single-camera based vision algorithm. Our socially interactive bio-inspired system is based on an intuitive integration-design strategy that combines computer vision based geometric head pose estimation algorithm, model based design (MBD) approach and real-time motion planning techniques. We have conducted an extensive testing to demonstrate effectiveness and robustness of our proposed system.

Place, publisher, year, edition, pages
IOS Press, 2016. Vol. 31, no 5, 2597-2610 p.
Keyword [en]
Socially interactive robot, biologically inspired robot, head pose estimation, vision based robot control, model based design, embodied telepresence system
National Category
Computer Science
Identifiers
URN: urn:nbn:se:kth:diva-197043DOI: 10.3233/JIFS-169100ISI: 000386532000015Scopus ID: 2-s2.0-84992110994OAI: oai:DiVA.org:kth-197043DiVA: diva2:1052721
Note

QC 20161207

Available from: 2016-12-07 Created: 2016-11-28 Last updated: 2016-12-07Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Li, Haibo
By organisation
Media Technology and Interaction Design, MID
In the same journal
Journal of Intelligent & Fuzzy Systems
Computer Science

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 5 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf