Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Analysis of stationary displacement patterns in rotating machinery subject to local harmonic excitation
KTH, School of Industrial Engineering and Management (ITM), Production Engineering, Machine and Process Technology.ORCID iD: 0000-0003-0155-127X
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Marcus Wallenberg Laboratory MWL.ORCID iD: 0000-0001-5760-3919
KTH, School of Industrial Engineering and Management (ITM), Production Engineering, Machine and Process Technology.
2017 (English)In: Journal of Sound and Vibration, ISSN 0022-460X, E-ISSN 1095-8568, Vol. 389, 224-235 p.Article in journal (Refereed) Published
Abstract [en]

Rotor vibration and stationary displacement patterns observed in rotating machineries subject to local harmonic excitation are analysed for improved understanding and dynamic characterization. The analysis stresses the importance of coordinate transformation between rotating and stationary frame of reference for accurate results and estimation of dynamic properties. A generic method which can be used for various rotor applications such as machine tool spindle and turbo machinery vibration is presented. The phenomenon shares similarities with stationary waves in rotating disks though focuses on vibration in shafts. The paper further proposes a graphical tool, the displacement map, which can be used for selection of stable rotational speed for rotating machinery. The results are validated through simulation of dynamic response of a milling cutter, which is a typical example of a variable speed rotor operating under different load conditions.

Place, publisher, year, edition, pages
Elsevier, 2017. Vol. 389, 224-235 p.
Keyword [en]
Rotor dynamics, Displacement map, Milling
National Category
Applied Mechanics
Research subject
Engineering Mechanics; SRA - Production
Identifiers
URN: urn:nbn:se:kth:diva-198179DOI: 10.1016/j.jsv.2016.11.017ScopusID: 2-s2.0-85002535452OAI: oai:DiVA.org:kth-198179DiVA: diva2:1055948
Projects
VINNOVA - FFI COMPIT
Funder
VINNOVA, G62250
Note

QC 20161214

Available from: 2016-12-13 Created: 2016-12-13 Last updated: 2017-03-28Bibliographically approved
In thesis
1. Estimation of Machining System Dynamic Properties - Measurement and Modelling
Open this publication in new window or tab >>Estimation of Machining System Dynamic Properties - Measurement and Modelling
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Dynamic characteristics of machining systems are analysed for improved understanding of both structural and process properties. The thesis stresses the use of testing methods under operational like conditions as these are more representative of closed loop systems, such as machining systems, as compared to conventional testing methods.

The test instrument proposed is a contactless excitation and response system, developed for testing of machine tool spindles under load and with rotating spindle. The instrument uses electromagnetic excitation and displacement sensors for analysis of rotating milling tools subject to load. A graphical tool for displaying and analysing rotor displacement was developed in conjunction with this.

A modelling procedure for both off-line and on-line estimation of dynamic properties of mechanical structure and process information is presented. The proposed auto-regressive moving average models enable calculation of operational dynamic parameters and they can be estimated in a recursive manner, thus enabling real-time monitoring. The discrimination between stable and unstable processes, both in turning and milling, was performed by analysing the damping obtained from the operational dynamic parameters.

Place, publisher, year, edition, pages
Stockholm: Kungliga Tekniska högskolan, 2017. 57 p.
Series
TRITA-IIP, ISSN 1650-1888 ; 17-02
Keyword
Machining system, Operational dynamic parameters, Displacement map, Contactless excitation and response system
National Category
Production Engineering, Human Work Science and Ergonomics
Research subject
SRA - Production; Production Engineering
Identifiers
urn:nbn:se:kth:diva-204579 (URN)978-91-7729-323-1 (ISBN)
Public defence
2017-04-28, F3, Lindstedtsvägen 26, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
VINNOVA
Note

QC 20170330

Available from: 2017-03-30 Created: 2017-03-28 Last updated: 2017-03-30Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Österlind, TomasKari, LeifNicolescu, Cornel-Mihai
By organisation
Machine and Process TechnologyMarcus Wallenberg Laboratory MWL
In the same journal
Journal of Sound and Vibration
Applied Mechanics

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 33 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf