Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Dropping a droplet of cysteine molecules on a rutile (110) interface: Reactive versus nonreactive classical molecular dynamics simulations
KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.ORCID iD: 0000-0002-1763-9383
2015 (English)In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 119, no 12, 6703-6712 p.Article in journal (Refereed) Published
Abstract [en]

Two different types of classical molecular dynamics approaches, based on reactive and nonreactive force-field parametrizations, are used to investigate the adsorption process of a nanodroplet of cysteine molecules onto a perfect and a defective rutile (110) surface in the gas phase. Three molecular samples made of different cysteine species, namely, one neutral and two zwitterionic models, are tested in order to check how much the starting configurations can bias the description of the deposition onto the surface and if the initial composition of the droplet can influence the final mixture and adsorption arrangements. The present comparison between the two classical computational strategies is useful to identify and suggest the most appropriate approach to depict the behavior of hybrid materials, which cannot be treated at the quantum dynamical level because of the prohibitive computational cost. The complex interaction mechanisms between the molecules of the isolated droplet far from the slab and when it is spread on the inorganic interface are represented reliably and effectively by the reactive dynamics, which is revealed to be a powerful and more appropriate methodology, in comparison with standard molecular dynamics, to disclose all the aspects connected with the process of adsorption. Indeed, differently from the usual nonreactive molecular dynamics, simulations based on reactive force fields do not require any arbitrary assumption on the nature of the adsorbed units and include chemical reactivity. This is often fundamental to identify the most relevant biomolecular species interacting with the inorganic supports and the proton exchange mechanisms acting at the interface.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2015. Vol. 119, no 12, 6703-6712 p.
Keyword [en]
Adsorption, Amino acids, Drops, Hybrid materials, Molecules, Oxide minerals, Classical molecular dynamics, Classical molecular dynamics approaches, Computational strategy, Initial composition, Inorganic interfaces, Interaction mechanisms, Proton exchange mechanisms, Reactive force field
National Category
Physical Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-198476DOI: 10.1021/acs.jpcc.5b00932ISI: 000351970800026Scopus ID: 2-s2.0-84925936961OAI: oai:DiVA.org:kth-198476DiVA: diva2:1056697
Note

QC 20161216

Available from: 2016-12-15 Created: 2016-12-15 Last updated: 2016-12-16Bibliographically approved
In thesis
1. Molecular Dynamics Studies of the Adsorption of Biomolecular Systems on Metal and Metal Oxide Surfaces
Open this publication in new window or tab >>Molecular Dynamics Studies of the Adsorption of Biomolecular Systems on Metal and Metal Oxide Surfaces
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2016. 74 p.
Series
TRITA-BIO-Report, ISSN 1654-2312 ; 2016:19
National Category
Theoretical Chemistry
Research subject
Theoretical Chemistry and Biology
Identifiers
urn:nbn:se:kth:diva-198489 (URN)978-91-7729-180-0 (ISBN)
Public defence
2016-12-16, FP41, Roslagstullsbacken 33, Stockholm, 09:15 (English)
Opponent
Supervisors
Note

QC 20161220

Available from: 2016-12-20 Created: 2016-12-15 Last updated: 2016-12-21Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Monti, SusannaLi, CuiÅgren, Hans
By organisation
Theoretical Chemistry and Biology
In the same journal
The Journal of Physical Chemistry C
Physical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 16 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf