Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Theoretical Evaluation on Potential Cytotoxicity of Graphene Quantum Dots
KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
Show others and affiliations
2016 (English)In: ACS BIOMATERIALS SCIENCE & ENGINEERING, ISSN 2373-9878, Vol. 2, no 11, 1983-1991 p.Article in journal (Refereed) Published
Abstract [en]

Owing to unique morphology, ultrasmall lateral sizes, and exceptional properties, graphene quantum dots (GQDs) hold great potential in many applications, especially in the field of electrochemical biosensors, bioimaging, drug delivery, et cetera. Its biosafety and potential cytotoxicity to human and animal cells has been a growing concern in recent years. In this work, the potential cytotoxicity of GQDs was evaluated by molecular dynamics simulations. Our simulation demonstrates that small size GQDs could easily permeate into the lipid membrane in a vertical way. It is relatively difficult to permeate into the lipid membrane for GQDs that are larger than GQD61 on the nanosecond time-scale. The thickness of the POPC membrane could even be affected by the small size of GQDs. Free energy calculations revealed that the free energy barrier of GQD permeation through the lipid membrane could greatly change with the change of GQD size. Under high GQD concentration, the GQD molecules could rapidly aggregate in water but disaggregate after entering into the membrane interior. Moreover, high concentrations of GQDs could induce changes in the structure properties and diffusion properties of the lipid bilayer, and it may affect the cell signal transduction. However, GQDs with relatively small size are not large enough to mechanically damage the lipid membrane. Our results suggest that the cytotoxicity of GQDs with small size is low and may be appropriate for biomedical application.

Place, publisher, year, edition, pages
AMER CHEMICAL SOC , 2016. Vol. 2, no 11, 1983-1991 p.
Keyword [en]
molecular dynamics simulations, graphene quantum dots, cytotoxicity, lipid membrane, membrane disruption
National Category
Biophysics
Identifiers
URN: urn:nbn:se:kth:diva-198574DOI: 10.1021/acsbiomaterials.6b00390ISI: 000388161200017Scopus ID: 2-s2.0-84994902330OAI: oai:DiVA.org:kth-198574DiVA: diva2:1057713
Note

QC 20161219

Available from: 2016-12-19 Created: 2016-12-19 Last updated: 2016-12-19Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Liang, Lijun
By organisation
Theoretical Chemistry and Biology
Biophysics

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 15 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf