Change search
ReferencesLink to record
Permanent link

Direct link
Light-matter interaction of strong laser pulses in the micro-, nano-, and picosecond regimes
Show others and affiliations
2007 (English)In: Materials Research Society Symposium Proceedings, 2007, 12-29 p.Conference paper (Refereed)
Abstract [en]

Light propagation in a medium is sensitively dependent on the shape and intensity of the optical pulse as well as on the electronic and vibrational structure of the basic molecular units. We review in this paper results of systematic studies of this problem for isotropic media. Our theoretical approach-the quantum mechanical-electrodynamical (QMED) approach-is based on a quantum mechanical account of the many-level electron-nuclear medium coupled to a numerical solution of the density matrix and Maxwell s equations. This allows to accommodate a variety of nonlinear effects which accomplish the propagation of strong light pulses. Particular attention is paid to the understanding of the role of coherent and sequential excitations of electron-nuclear degrees of freedom. The QMED combination of quantum chemistry with classical pulse propagation allows to estimate the optical transmission from cross sections of multi-photon absorption processes and from considerations of propagation effects, saturation and pulse effects. Results of the theory suggest that in the nonlinear regime it is often necessary to account simultaneously for coherent one-step and incoherent step-wise multi-photon absorption, as well as for off-resonant excitations even when resonance conditions prevail. The dynamic theory of nonlinear propagation of a few interacting intense light pulses is here highlighted in a study of the optical power limiting with platinum-organic molecular compounds. © 2007 Materials Research Society.

Place, publisher, year, edition, pages
2007. 12-29 p.
Keyword [en]
Cross section, Degrees of freedom, Density matrix, Dynamic theory, Intense light pulse, Isotropic media, Light pulse, Light-matter interactions, Molecular compounds, Molecular units, Multi-photon absorption, Non-linear regimes, Nonlinear effect, Nonlinear propagation, Nuclear medium, Numerical solution, Off-resonant excitation, Optical power limiting, Optical pulse, Optical transmissions, Picosecond regime, Propagation effect, Pulse propagation, Quantum mechanical, Resonance condition, Systematic study, Theoretical approach, Vibrational structures, Absorption, Functional materials, Hybrid materials, Laser pulses, Light propagation, Light pulse generators, Maxwell equations, Multiphoton processes, Photons, Platinum, Pulsed laser applications, Quantum theory, Scanning, Sulfur compounds, Light transmission
National Category
Theoretical Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-198771DOI: 10.1557/PROC-1015-BB01-04ScopusID: 2-s2.0-70349876837ISBN: 9781605604206OAI: oai:DiVA.org:kth-198771DiVA: diva2:1059032
Conference
Hybrid Functional Materials for Optical Applications - 2007 MRS Spring Meeting, 9 April 2007 through 13 April 2007, San Francisco, CA
Note

References: McKay, T.J., Bolger, J.A., Staromlynska, J., Davy, J.R., (1998) J. Chem. Phys, 118, p. 5537; Parker, C.A., (1968) Photoluminescence of solutions, , Elsevier; Cooper, T.M., McLean, D.C., Rogers, J.E., (2001) Chem. Phys. Lett, 349, p. 31; Norman, P., Cronstrand, P., Ericsson, J., (2002) Chem. Phys, 285, p. 207; Rogers, J.E., Cooper, T.M., Fleitz, P.A., Glass, D.J., McLean, D.G., (2002) J. Phys. Chem. A, 106, p. 10108; J. E. Rogers, K. A. Nguyen, D. C. Hufnagle, D. C. McLean, W. Su, K. M. Gossett, A. R. Burke, S. A. Vinogradov, R. Pachter, and P. A. Fleitz, J. Phys. Chern. A 107, 11331 (2003)Rogers, J.E., Slagle, J.E., McLean, D.G., Sutherland, R.L., Sankaran, B., Kannan, R., Tan, L.-S., Fleitz, P.A., (2004) J. Phys. Chem. A, 108, p. 5514; Baev, A., Gel mukhaniov, F., Macak, P., Ågreni, H., Luo, Y., (2002) J. Chem. Phys, 117, p. 6214; Baev, A., Gel mukhaniov, F., Kimberg, V., arid, H., Ågren, (2003) J. Phys. B: At. Mol. Opt. Phys, 36, p. 3761; Jackson, J.D., (1999) Classical Electrodynamics, , Wiley, New York, 3rd ed; Boyd, R.W., (1992) Nonlinear Optics, , Academic Press, Inc, San Diego; Gel mukhanov, F., Baev, A., Macak, P., Luo, Y., Ågren, H., (2002) J. Opt. Soc. Am. B, 19, p. 937; Becke, A.D., (1993) J. Chem. Phys, 98, p. 5648; Bergner, A., Dolg, M., Kuchle, W., Stoll, H., Preuss, H., (1993) Mol. Phys, 80, p. 1431; Andrae, D., Haussermann, U., Dolg, M., Stoll, H., Preuss, H., (1990) Theor. Chim. Acta, 77, p. 123; Hehre, W.J., Ditche̊ld, R., Pople, J.A., (1972) J. Chem. Phys, 56, p. 2257; Yanai, T., Tew, D.P., Handy, N.C., (2004) Chem. Phys. Lett, 393, p. 51; M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery Jr., R. E. Stratmann, J. C. Burant, et al. Gaussian 98 (1998), Gaussian Inc., Pittsburgh PA, 1998. See http://www.gaussian.comhttp://www.kjemi.uio.no/software/dalton/dalton.html, DALTON, a molecular electronic structure program, Release 2.0 2005, seePeach, M.J.G., Helgaker, T., Salek, P., Keal, T.W., Lutns̊, O.B., Tozer, D.J., Handy, N.C., (2006) Phys. Chem. Chem. Phys, 8, p. 558; Paterson, M.J., Christiansen, O., Pawlowski, F., Jr̊gensen, P., Høttig, C., Helgaker, T., Salek, P., (2006) J. Chem. Phys, 124, p. 054322; Lopes, C., private communicationNorman, P., Ruud, K., (2006) Nonlinear optical properties of matter: From molecules to condensed phases, , edited by M. Papadopoulos, J. Leszczynski, and A. J. Sadlej Kiuwer Academic Press. QC 20170109

Available from: 2016-12-22 Created: 2016-12-21 Last updated: 2017-01-09Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Norman, P.Ågren, Hans
By organisation
Theoretical Chemistry (closed 20110512)
Theoretical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 28 hits
ReferencesLink to record
Permanent link

Direct link