Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A density functional theory study of magneto-electric Jones birefringence of noble gases, furan homologues, and mono-substituted benzenes
Show others and affiliations
2013 (English)In: Journal of Chemical Physics, ISSN 0021-9606, E-ISSN 1089-7690, Vol. 139, no 19, article id 194311Article in journal (Refereed) Published
Abstract [en]

We report on the results of a systematic ab initio study of the Jones birefringence of noble gases, of furan homologues, and of monosubstituted benzenes, in the gas phase, with the aim of analyzing the behavior and the trends within a list of systems of varying size and complexity, and of identifying candidates for a combined experimental/theoretical study of the effect. We resort here to analytic linear and nonlinear response functions in the framework of time-dependent density functional theory. A correlation is made between the observable (the Jones constant) and the atomic radius for noble gases, or the permanent electric dipole and a structure/chemical reactivity descriptor as the para Hammett constant for substituted benzenes. © 2013 AIP Publishing LLC.

Place, publisher, year, edition, pages
American Institute of Physics (AIP), 2013. Vol. 139, no 19, article id 194311
Keywords [en]
Density functional theory studies, Electric dipole, Hammett constants, Monosubstituted benzenes, Non-linear response, Reactivity descriptor, Substituted benzenes, Time dependent density functional theory, Aromatic compounds, Benzene, Birefringence, Density functional theory, Organic pollutants, Inert gases, benzene derivative, furan, furan derivative, inert gas, article, chemistry, electromagnetic field, quantum theory, Benzene Derivatives, Electromagnetic Fields, Furans, Noble Gases
National Category
Theoretical Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-198732DOI: 10.1063/1.4830412ISI: 000327714900024Scopus ID: 2-s2.0-84903366467OAI: oai:DiVA.org:kth-198732DiVA, id: diva2:1059099
Note

References: Barron, L.D., (2004) Molecular Light Scattering and Optical Activity, , (Cambridge University Press, Cambridge); Rizzo, A., Coriani, S., (2005) Adv. Quantum Chem., 50, p. 143. , 10.1016/S0065-3276(05)50008-X; Jaszunski, M., Rizzo, A., Ruud, K., Molecular electric, magnetic and optical properties (2012) Handbook of Computational Chemistry, 1, pp. 361-441. , in, edited by J. Leszczynski (Springer Science (in two volumes) + Business Media (in three volumes)). Vol., Cha; Caldwell, D.J., Eyring, H., (1971) The Theory of Optical Activity, , (Wiley Interscience, New York); Schellman, J.A., (1975) Chem. Rev., 75, p. 323. , 10.1021/cr60295a004; (2000) Circular Dichroism: Principles and Applications, , 2nd ed., edited by N. Berova, K. Nakanishi, and R. W. Woody (Wiley, New York); (2012) Comprehensive Chiroptical Spectroscopy, , edited by N. Berova, P. L. Polavarapu, K. Nakanishi, and R. W. Woody (Wiley, New York); Kerr, J., (1875) Philos. Mag., 50, p. 337. , 10.1080/14786447508641302; Kerr, J., (1875) Philos. Mag., 50, p. 446. , 10.1080/14786447508641319; Buckingham, A.D., (1956) Proc. Phys. Soc. B, 69, p. 344. , 10.1088/0370-1301/69/3/309; Mayer, G., Gires, F., (1964) C. R. Hebd. Séances Acad. Sci., Paris, 258, p. 2039; Ho, P.P., Alfano, R.R., (1979) Phys. Rev. A, 20, p. 2170. , 10.1103/PhysRevA.20.2170; Majorana, Q., (1902) Rend. Accad. Naz. Lincei, 11, p. 374; Majorana, Q., (1902) C. R. Hebd. Séances Acad. Sci., Paris, 135, p. 159; Majorana, Q., (1902) C. R. Hebd. Séances Acad. Sci., Paris, 135, p. 235; Cotton, A., Mouton, M., (1905) C. R. Hebd. Séances Acad. Sci., Paris, 141, p. 317; Cotton, A., Mouton, M., (1905) C. R. Hebd. Séances Acad. Sci., Paris, 141, p. 349; Cotton, A., Mouton, M., (1907) C. R. Hebd. Séances Acad. Sci., Paris, 145, p. 229; Cotton, A., Mouton, M., (1907) C. R. Hebd. Séances Acad. Sci., Paris, 145, p. 870; Buckingham, A.D., Pople, J.A., (1956) Proc. Phys. Soc. B, 69, p. 1133. , 10.1088/0370-1301/69/11/311; Buckingham, A.D., (1959) J. Chem. Phys., 30, p. 1580. , 10.1063/1.1730242; Buckingham, A.D., Disch, R.L., (1963) Proc. Roy. Soc. A, 273, p. 275. , 10.1098/rspa.1963.0088; Buckingham, A.D., Longuet-Higgins, H.C., (1968) Mol. Phys., 14, p. 63. , 10.1080/00268976800100051; Buckingham, A.D., Jamieson, M.J., (1971) Mol. Phys., 22, p. 117. , 10.1080/00268977100102381; Imrie, D.A., Raab, R.E., (1991) Mol. Phys., 74, p. 833. , 10.1080/00268979100102611; Raab, R.E., De Lange, O.L., (2003) Mol. Phys., 101, p. 3467. , 10.1080/00268970310001644612; De Lange, O.L., Raab, R.E., (2004) Mol. Phys., 102, p. 125. , 10.1080/00268970410001668589; Jones, R.C., (1948) J. Opt. Soc. Am., 38, p. 671. , 10.1364/JOSA.38.000671; Graham, E.B., Raab, R.E., (1983) Proc. R. Soc. London, Ser. A, 390, p. 73. , 10.1098/rspa.1983.0123; Pockels, F., (1913) Radium, 10, p. 152. , 10.1051/radium:01913001005015201; Graham, E.B., Raab, R.E., (1984) Mol. Phys., 52, p. 1241. , 10.1080/00268978400101911; Kielich, S., (1976) Molecular Electro-Optics, , in, edited by C. T. O'Konski (Marcel Dekker, New York); Baranova, N.B., Bogdanov, Y.V., Zel'Dovich, B.Y., (1977) Sov. Phys. Usp., 20, p. 870. , 10.1070/PU1977v020n10ABEH005470; Ross, H.J., Sherborne, B.S., Stedman, G.E., (1989) J. Phys. B, 22, p. 459. , 10.1088/0953-4075/22/3/011; Faraday, M., (1846) Philos. Mag., 28, p. 294; Faraday, M., (1846) Philos. Trans. R. Soc., 136, p. 1. , 10.1098/rstl.1846.0001; Michal, J., Thulstrup, E.W., (1986) Spectroscopy with Polarized Light, , (VCH Publishers, Inc., New York); Atkins, P.W., Miller, M.H., (1968) Mol. Phys., 15, p. 503. , 10.1080/00268976800101401; Barron, L.D., Vrbancich, J., (1984) Mol. Phys., 51, p. 715. , 10.1080/00268978400100481; Kalugin, N.G., Kleindienst, P., Wagniére, G.H., (1999) Chem. Phys., 248, p. 105. , 10.1016/S0301-0104(99)00243-8; Stephens, P.J., (1970) J. Chem. Phys., 52, p. 3489. , 10.1063/1.1673514; Thulstrup, E.W., (1980) Aspects of the Linear Magnetic Circular Dichroism of Planar Organic Molecules, , (Springer-Verlag, Berlin); Mason, W.R., (2007) A Practical Guide to Magnetic Circular Dichroism Spectroscopy, , (Wiley, New York); Piepho, S.B., Schatz, P.N., (1983) Group Theory in Spectroscopy: With Applications to Magnetic Circular Dichroism, , (Wiley, New York); Buckingham, A.D., Stephens, P.J., (1966) Annu. Rev. Phys. Chem., 17, p. 399. , 10.1146/annurev.pc.17.100166.002151; Schatz, P.N., McCaffery, A.J., (1969) Q. Rev., 23, p. 552. , 10.1039/qr9692300552; Stephens, P.J., (1974) Annu. Rev. Phys. Chem., 25, p. 201. , 10.1146/annurev.pc.25.100174.001221; Stephens, P.J., (1976) Adv. Chem. Phys., 35, p. 197. , 10.1002/9780470142547.ch4; Stephens, P.J., (1968) Chem. Phys. Lett., 2, p. 241. , 10.1016/0009-2614(68)85012-2; Rikken, G.L.J.A., Raupach, E., (1997) Nature (London), 390, p. 493. , 10.1038/37323; Rikken, G.L.J.A., Raupach, E., (2000) Nature (London), 405, p. 932. , 10.1038/35016043; Kitagawa, Y., Segawa, H., Ishii, K., (2011) Angew. Chem., Int. Ed., 50, p. 9133. , 10.1002/anie.201101809; Kitagawa, Y., Miyatake, T., Ishii, K., (2012) Chem. Commun., 48, p. 5091. , 10.1039/c2cc30996c; Rizzo, A., Coriani, S., (2003) J. Chem. Phys., 119, p. 11064. , 10.1063/1.1622927; Runge, E., Gross, E.K.U., (1984) Phys. Rev. Lett., 52, p. 997. , 10.1103/PhysRevLett.52.997; Marques, M.A.L., Gross, E.K.U., (2004) Annu. Rev. Phys. Chem., 55, p. 427. , 10.1146/annurev.physchem.55.091602.094449; Rizzo, A., Cappelli, C., Jansík, B., Jonsson, D., Sałek, P., Coriani, S., Ågren, H., (2004) J. Chem. Phys., 121, p. 8814. , 10.1063/1.1802771; Rizzo, A., Cappelli, C., Jansík, B., Jonsson, D., Sałek, P., Coriani, S., Ågren, H., (2008) J. Chem. Phys., 129, p. 039901. , (Erratum). 10.1063/1.2946699; Rizzo, A., Cappelli, C., Jansík, B., Jonsson, D., Sałek, P., Coriani, S., Wilson, D.J.D., Ågren, H., (2005) J. Chem. Phys., 122, p. 234314. , 10.1063/1.1935513; Rizzo, A., Cappelli, C., Jansík, B., Jonsson, D., Sałek, P., Coriani, S., Wilson, D.J.D., Ågren, H., (2008) J. Chem. Phys., 129, p. 039901. , (Erratum). 10.1063/1.2946699; Purvis, G.D., Bartlett, R.J., (1982) J. Chem. Phys., 76, p. 1910. , 10.1063/1.443164; Christiansen, O., Coriani, S., Gauss, J., Hättig, C., Jørgensen, P., Pawłowski, F., Rizzo, A., Accurate NLO properties for small molecules: Methods and results (2006) Non-Linear Optical Properties of Matter: From Molecules to Condensed Phases, 1, pp. 51-99. , in, Challenges and Advances in Computational Chemistry and Physics Vol., edited by M. G. Papadopoulos, A. J. Sadlej, and J. Leszczynski (Springer, Dordrecht, The Netherlands); Rizzo, A., Cappelli, C., (2011) Int. J. Quantum Chem., 111, p. 760. , 10.1002/qua.22813; Rizzo, A., Shcherbin, D., Ruud, K., (2009) Can. J. Chem., 87, p. 1352. , 10.1139/V09-087; Shcherbin, D., Thorvaldsen, A.J., Jonsson, D., Ruud, K., (2011) J. Chem. Phys., 135, p. 134114. , 10.1063/1.3645182; Mironova, P.V., Ovsiannikov, V.D., Chernushkin, V.V., (2006) J. Phys. B, 39, p. 4999. , 10.1088/0953-4075/39/23/016; Arteaga, O., (2010) Opt. Lett., 35, p. 1359. , 10.1364/OL.35.001359; Roth, T., Rikken, G.L.J.A., (2000) Phys. Rev. Lett., 85, p. 4478. , 10.1103/PhysRevLett.85.4478; Roth, T., (2000) Experimental Verification of the Jones Birefringence Induced in Liquids, , Diplomarbeit, Darmstadt University of Technology and Grenoble High Magnetic Field Laboratory; Roth, T., Rikken, G.L.J.A., Magneto-electric Jones birefringence: A bianisotropic effect (2000) Proceedings of the 8th International Conference on Electromagnetics of Complex Media, Lisbon, Portugal, 27-29 September 2000, Bianisotropics 2000, , in, Technical Report No. ADPO 11633 (Defense Technical Information Center); Rikken, G.L.J.A., Raupach, E., Roth, T., (2001) Physica B, 294-295, p. 1. , 10.1016/S0921-4526(00)00595-0; Roth, T., Rikken, G.L.J.A., (2002) Phys. Rev. Lett., 88, p. 063001. , 10.1103/PhysRevLett.88.063001; Sałek, P., Vahtras, O., Helgaker, T., Ågren, H., (2002) J. Chem. Phys., 117, p. 9630. , 10.1063/1.1516805; Jansík, B., Sałek, P., Jonsson, D., Vahtras, O., Ågren, H., (2005) J. Chem. Phys., 122, p. 054107. , 10.1063/1.1811605; Rizzo, A., Coriani, S., Ruud, K., Response function theory computational approaches to linear and non-linear optical spectroscopy (2012) Computational Strategies for Spectroscopy: From Small Molecules to Nano Systems, pp. 77-135. , in, edited by V. Barone (John Wiley Sons, Hoboken, NJ). Cha; Hansch, C., Leo, A., Taft, R.W., (1991) Chem. Rev., 91, p. 165. , 10.1021/cr00002a004; March, J., (1998) Advanced Organic Chemistry: Reactions, Mechanisms and Structure, , (Wiley Sons, New York); Becke, A.D., (1993) J. Chem. Phys., 98, p. 5648. , 10.1063/1.464913; Becke, A.D., (1988) Phys. Rev. A, 38, p. 3098. , 10.1103/PhysRevA.38.3098; Lee, C., Yang, W., Parr, R.G., (1988) Phys. Rev. B, 37, p. 785. , 10.1103/PhysRevB.37.785; Dunning, T.H., (1989) J. Chem. Phys., 90, p. 1007. , 10.1063/1.456153; Yanai, Y., Tew, D.P., Handy, N.C., (2004) Chem. Phys. Lett., 393, p. 51. , 10.1016/j.cplett.2004.06.011; Peach, M.J.G., Helgaker, T., Sałek, P., Keal, T.W., Lutnæs, O.B., Tozer, D.J., Handy, N.C., (2006) Phys. Chem. Chem. Phys., 8, p. 558. , 10.1039/b511865d; Paterson, M.J., Christiansen, O., Pawłowski, F., Jørgensen, P., Hättig, C., Helgaker, T., Sałek, P., (2006) J. Chem. Phys., 124, p. 054322. , 10.1063/1.2163874; Woon, D.E., Dunning Jr., T.H., (1993) J. Chem. Phys., 98, p. 1358. , 10.1063/1.464303; Woon, D.E., Dunning Jr., T.H., (1994) J. Chem. Phys., 100, p. 2975. , 10.1063/1.466439; Peterson, K., Figgen, D., Goll, E., Stoll, H., Dolg, M., (2003) J. Chem. Phys., 119, p. 11113. , 10.1063/1.1622924; Frisch, M.J., Trucks, G.W., Schlegel, H.B., (2003), Gaussian 03, Revision B05, Gaussian, Inc., Pittsburgh, PAAidas, K., Angeli, C., Bak, K.L., Bakken, V., Bast, R., Boman, L., Christiansen, O., Ågren, H., The Dalton quantum chemistry program system WIREs Comput. Mol. Sci., , (published online). 10.1002/wcms.1172; Atkins, P.W., Friedman, R., (2005) Molecular Quantum Mechanics, , 4th ed. (Oxford University Press, Oxford, UK), Cha; (2005) CRC Handbook of Chemistry and Physics, , http://www.hbcpnetbase.com, edited D. R. Lide (CRC Press, Boca Raton, FL) (Internet version, see); Clementi, E., Raimondi, D.L., Reinhardt, W.P., (1967) J. Chem. Phys., 47, p. 1300. , 10.1063/1.1712084; Politzer, P., Jin, P., Murray, J.S., (2002) J. Chem. Phys., 117, p. 8197. , 10.1063/1.1511180; Cheng, L.-T., Tam, W., Stevenson, S.H., Meredith, G.R., Rikken, G., Marder, S.R., (1991) J. Phys. Chem., 95, p. 10631. , 10.1021/j100179a026; Leffler, J.E., Grunwald, E., (1989) Rates and Equilibria of Organic Reactions, , (Dover, Mineola); Norman, P., (2011) Phys. Chem. Chem. Phys., 13, p. 20519. , 10.1039/c1cp21951k. QC 20170111

Available from: 2016-12-22 Created: 2016-12-21 Last updated: 2017-11-29Bibliographically approved
In thesis
1. Derivation and application of response functions for nonlinear absorption and dichroisms
Open this publication in new window or tab >>Derivation and application of response functions for nonlinear absorption and dichroisms
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis is titled ’Derivation and application of response functions for nonlinear absorption and dichroisms’ and was written by Tobias Fahleson at the Division of Theoretical Chemistry & Biology at KTH Royal Institute of Technology in Sweden. It explores and expands upon theoretical means of quantifying a number of nonlinear spectroscopies, including two-photon absorption, resonant inelastic x-ray scattering, Jones birefringence, and magnetic circular dichroism. Details are provided for the derivation and program implementation of complex-valued (damped) cubic response functions that have been implemented in the quantum chemistry package DALTON [1], based on working equations formulated for an approximate-state wave function. This is followed by an assessment of the implementation. It is demonstrated how two-photon absorption (TPA) can be described either through second-order transition moments or the damped cubic response function. A set of illustrative TPA profiles are produced for smaller molecules. In addition, resonant inelastic x-ray scattering (RIXS) is explored in a similar manner as two-photon absorption. It is shown for small systems how RIXS spectra may be obtained using a reduced form of the cubic response function. Linear birefringences are investigated for noble gases, monosubstituted benzenes, furan homologues, and liquid acetonitrile. Regarding the noble gases, the Jones effect is shown to be proportional to a power series with respect to atomic radial sizes. For monosubstituted benzenes, a linear relation between the Jones birefringence and the empirical para-Hammett constant as well as the permanent electric dipole moment is presented. QM/MM protocols are applied for a pure acetonitrile liquid, including polarizable embedding and polarizable-density embedding models. The final chapter investigates magnetically induced circular dichroism (MCD). A question regarding relative stability of the first set of excited states for DNA-related molecular systems is resolved through MCD by exploiting the signed nature of circular dichroisms. Furthermore, to what extent solvent contributions affect MCD spectra and the effect on uracil MCD spectrum due to thionation is studied.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2018. p. 85
Series
TRITA-BIO-Report, ISSN 1654-2312 ; 2018:01
Keywords
Theoretical spectroscopy, cubic response theory, damped response theory, magnetic circular dichroism, linear birefringence, two-photon absorption, TPA, resonant-inelastic x-ray scattering, RIXS, DALTON program
National Category
Theoretical Chemistry
Research subject
Theoretical Chemistry and Biology
Identifiers
urn:nbn:se:kth:diva-218662 (URN)978-91-7729-627-0 (ISBN)
Public defence
2018-02-28, FA32, Roslagstullsbacken 21, Albanova, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
Knut and Alice Wallenberg Foundation, KAW- 2013.0020Swedish Research Council, 621-2014-4646
Note

QC 20180108

Available from: 2018-01-08 Created: 2017-11-29 Last updated: 2018-01-08Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Norman, P.
In the same journal
Journal of Chemical Physics
Theoretical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 68 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf