Change search
ReferencesLink to record
Permanent link

Direct link
TD-DFT investigation of the magnetic circular dichroism spectra of some purine and pyrimidine bases of nucleic acids
Show others and affiliations
2015 (English)In: Journal of Physical Chemistry A, ISSN 1089-5639, E-ISSN 1520-5215, Vol. 119, no 21, 5476-5489 p.Article in journal (Refereed) Published
Abstract [en]

We present a computational study of the magnetic circular dichroism (MCD) spectra in the 200-300 nm wavelength region of purine and its derivative hypoxanthine, as well as of the pyrimidine bases of nucleic acids uracil, thymine, and cytosine, using the B3LYP and CAM-B3LYP functionals. Solvent effects are investigated within the polarizable continuum model and by inclusion of explicit water molecules. In general, the computed spectra are found to be in good agreement with the experimental ones, apart from some overall blue shifts. Both the pseudo-A term shape of the MCD spectra of the purines and the B term shape of the spectra of pyrimidine bases are reproduced. Our calculations also correctly reproduce the reversed phase of the MCD bands in purine compared to that of its derivatives present in nucleic acids. Solvent effects are sizable and system specific, but they do not in general alter the qualitative shape of the spectra. The bands are dominated by the bright π → π∗ transitions, and our calculations in solution nicely reproduce their energy differences, improving the estimates obtained in the gas phase. Shoulders are predicted for purine and uracil due to n → π∗ excitations, but they are too weak to be observed in the experiment. © 2015 American Chemical Society.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2015. Vol. 119, no 21, 5476-5489 p.
Keyword [en]
Aromatic compounds, Biomolecules, Continuum mechanics, Molecules, Nucleic acids, Solvents, Spectroscopy, Computational studies, Energy differences, Explicit water molecules, Magnetic circular dichroism spectra, Magnetic circular dichroisms, Polarizable continuum model, Qualitative shapes, Wavelength regions, Dichroism, cytosine, gas, solvent, thymine, uracil, water, chemical model, chemistry, circular dichroism, computer simulation, Gases, Models, Chemical
National Category
Theoretical Chemistry
URN: urn:nbn:se:kth:diva-198714DOI: 10.1021/jp512468kISI: 000355495100043ScopusID: 2-s2.0-84930634429OAI: diva2:1059126

References: Mason, W.R., (2007) A Practical Guide to Magnetic Circular Dichroism Spectroscopy, , Wiley: New York; Voelter, W., Records, R., Bunnenberg, E., Djerassi, C., Magnetic Circular Dichroism Studies. VI. Investigation of Some Purines, Pyrimidines, and Nucleosides (1968) J. Am. Chem. Soc., 90, p. 6163; Djerassi, C., Bunnenberg, E., Elder, D.L., Organic Chemical Applications of Magnetic Circular Dichroism (1971) Pure Appl. Chem., 25, pp. 57-90; Coriani, S., Jørgensen, P., Ruud, K., Rizzo, A., Olsen, J., Ab Initio Determinations of Magnetic Circular Dichroism (1999) Chem. Phys. Lett., 300, pp. 61-68; Coriani, S., Hättig, C., Jørgensen, P., Helgaker, T., Gauge-Origin Independent Magneto-Optical Activity within Coupled Cluster Response Theory (2000) J. Chem. Phys., 113, pp. 3561-3572; Kjærgaard, T., Jansik, B., Jørgensen, P., Coriani, S., Michl, J., Gauge-Origin-Independent Coupled Cluster Singles and Doubles Calculation of Magnetic Circular Dichroism of Azabenzenes and Phosphabenzene using London Orbitals (2007) J. Phys. Chem. A, 111, pp. 11278-11286; Seth, M., Ziegler, T., Banerjee, A., Autschbach, J., Van Gisbergen, S.J.A., Baerends, E.J., Calculation of the A Term of Magnetic Circular Dichroism Based on Time Dependent-Density Functional Theory I. Formulation and Implementation (2004) J. Chem. Phys., 120, pp. 10942-10954; Seth, M., Ziegler, T., Autschbach, J., Ab Initio Calculation of the C/D Ratio of Magnetic Circular Dichroism (2005) J. Chem. Phys., 122, p. 094112; Seth, M., Ziegler, T., Calculation of the B term of Magnetic Circular Dichroism. A Time-Dependent Density Functional Approach (2007) J. Chem. Theory Comput., 3, pp. 434-447; Seth, M., Ziegler, T., Calculation of Magnetic Circular Dichroism Spectra with Time-Dependent Density Functional Theory (2010) Adv. Inorg. Chem., 62, pp. 41-109; Solheim, H., Frediani, L., Ruud, K., Coriani, S., An IEF-PCM Study of Solvent Effects on the Faraday B Term of MCD (2008) Theor. Chem. Acc., 119, pp. 231-244; Solheim, H., Ruud, K., Coriani, S., Norman, P., Complex Polarization Propagator Calculations of Magnetic Circular Dichroism Spectra (2008) J. Chem. Phys., 128, p. 094103; Solheim, H., Ruud, K., Coriani, S., Norman, P., The A and B Terms of Magnetic Circular Dichroism Revisited (2008) J. Phys. Chem. A, 112, pp. 9615-9618; Seth, M., Krykunov, M., Ziegler, T., Autschbach, J., Application of Magnetically Perturbed Time-Dependent Density Functional Theory to Magnetic Circular Dichroism. II. Calculation of A Terms (2008) J. Chem. Phys., 128, p. 234102; Seth, M., Krykunov, M., Ziegler, T., Autschbach, J., Banerjee, A., Application of Magnetically Perturbed Time-Dependent Density Functional Theory to Magnetic Circular Dichroism: Calculation of B Terms (2008) J. Chem. Phys., 128, p. 144105; Kjærgaard, T., Jørgensen, P., Thorvaldsen, A., Saek, P., Coriani, S., Gauge-Origin Independent Formulation and Implementation of Magneto-Optical Activity within Atomic-Orbital-Density Based Hartree-Fock and Kohn-Sham Response Theories (2009) J. Chem. Theory Comput., 5, pp. 1997-2020; Kjærgaard, T., Kristensen, K., Kauczor, J., Jørgensen, P., Coriani, S., Thorvaldsen, A., Comparison of Standard and Damped Response Formulations of Magnetic Circular Dichroism (2011) J. Chem. Phys., 135; Kjærgaard, T., Coriani, S., Ruud, K., Ab Initio Calculation of Magnetic Circular Dichroism (2012) Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2, pp. 443-455; Fahleson, T., Kauczor, J., Norman, P., Coriani, S., The Magnetic Circular Dichroism Spectrum of the C60 Fullerene (2013) Mol. Phys., pp. 1401-1404; Krykunov, M., Seth, M., Ziegler, T., Autschbach, J., Calculation of the Magnetic Circular Dichroism B Term from the Imaginary Part of the Verdet Constant Using Damped Time-Dependent Density Functional Theory (2007) J. Chem. Phys., 127, p. 244102; Lee, K.-M., Yabana, K., Bertsch, G.F., Magnetic Circular Dichroism in Real-Time Time-Dependent Density Functional Theory (2011) J. Chem. Phys., 134, p. 144106; Stepanek, P., Bour, P., Computation of Magnetic Circular Dichroism by Sum-Over-States Summations (2013) J. Comput. Chem., 34, pp. 1531-1539; Stepanek, P., Straka, M., Andrushchenko, V., Bour, P., Communication: Fullerene Resolution by the Magnetic Circular Dichroism (2013) J. Chem. Phys., 138, p. 151103; Honda, Y., Hada, M., Ehara, M., Nakatsuji, H., Michl, J., Theoretical Studies on Magnetic Circular Dichroism by the Finite Perturbation Method with Relativistic Corrections (2005) J. Chem. Phys., 123, p. 164113; Norman, P., Bishop, D.M., Jensen, H.J.A., Oddershede, J., Nonlinear Response Theory with Relaxation: The First-Order Hyperpolarizability (2005) J. Chem. Phys., 123, p. 194103; Kauczor, J., Jørgensen, P., Norman, P., On the Efficiency of Algorithms for Solving Hartree-Fock and Kohn-Sham Response Equations (2011) J. Chem. Theory Comput., 7, p. 1610; Tomasi, J., Mennucci, B., Cammi, R., Quantum Mechanical Continuum Solvation Models (2005) Chem. Rev., 105, p. 2999; Zgierski, M.Z., Vibronic Structure of MCD Spectra. I. Non-Condon Effects in Molecules with Nondegenerate Electronic States (1985) J. Chem. Phys., 83, pp. 2170-2185; Lin, N., Solheim, H., Zhao, X., Santoro, F., Ruud, K., First Principles Studies of the Vibrationally Resolved Magnetic Circular Dichroism Spectra of Biphenylene (2013) J. Chem. Theory Comput., 9, pp. 1557-1567; Crespo-Hernandez, C.E., Cohen, B., Hare, P.M., Kohler, B., Ultrafast Excited-State Dynamics in Nucleic Acids (2004) Chem. Rev., 104, pp. 1977-2020; Middleton, C.T., De La Harpe, K., Su, C., Law, Y.K., Crespo-Hernandez, C.E., Kohler, B., DNA Excited-State Dynamics: From Single Bases to the Double Helix (2009) Annu. Rev. Phys. Chem., 60; Gustavsson, T., Improta, R., Markovitsi, D., DNA/RNA: Building Blocks of Life under UV Irradiation (2010) J. Phys. Chem. Lett., 1, pp. 2025-2030; Santoro, F., Improta, R., Fahleson, T., Kauczor, J., Norman, P., Coriani, S., Relative Stability of the La and Lb States in Adenine and Guanine: Direct Evidence from TD-DFT Salculations of MCD Spectra (2014) J. Phys. Chem. Lett., 5, pp. 1806-1811; Szalay, P., Watson, T., Perera, A., Lotrich, V., Bartlett, R., Benchmark Studies on the Building Blocks of DNA. 1. Superiority of Coupled Cluster Methods in Describing the Excited States of Nucleobases in the Franck-Condon Region (2012) J. Phys. Chem. A, 116, pp. 6702-6710; Hare, P.M., Crespo-Hernández, C.E., Kohler, B., Internal Conversion to the Electronic Ground State Occurs via Two Distinct Pathways for Pyrimidine Bases in Aqueous Solution (2007) Proc. Natl. Acad. Sci. U. S. A., 104, pp. 435-440; Santoro, F., Barone, V., Gustavsson, T., Improta, R., Solvent Effect on the Singlet Excited-State Lifetimes of Nucleic Acid Bases: A Computational Study of 5-Fluorouracil and Uracil in Acetonitrile and Water (2006) J. Am. Chem. Soc., 128, pp. 16312-16322; Improta, R., Barone, V., Lami, A., Santoro, F., Quantum Dynamics of the Ultrafast ππ/nπ∗ Population Transfer in Uracil and 5-Fluoro-Uracil in Water and Acetonitrile (2009) J. Phys. Chem. B, 113, pp. 14491-14503; Picconi, D., Avila Ferrer, F.J., Improta, R., Lami, A., Santoro, F., Quantum-Classical Effective-Modes Dynamics of the ππ→ nπ∗ Decay in 9H-Adenine. A Quadratic Vibronic Coupling Model (2013) Faraday Discuss., 163, pp. 223-242; Biemann, L., Kovalenko, S.A., Kleinermanns, K., Mahrwald, R., Markert, M., Improta, R., Excited State Proton Transfer Is Not Involved in the Ultrafast Deactivation of Guanine-Cytosine Pair in Solution (2011) J. Am. Chem. Soc., 133, pp. 19664-19667; Improta, R., Barone, V., Interplay between "neutral" and "charge-Transfer" Excimers Rules the Excited State Decay in Adenine-Rich Polynucleotides (2011) Angew. Chem., Int. Ed., 50, pp. 12016-12019; Santoro, F., Barone, V., Improta, R., The Excited States Decay of the A-T DNA: A PCM/TD-DFT Study in Aqueous Solution of the (9-Methyl-Adenine)2 (1-Methyl-Thymine)2 Stacked Tetramer (2009) J. Am. Chem. Soc., 131, pp. 15232-15245; Spata, V., Matsika, S., Role of Excitonic Coupling and Charge-Transfer States in the Absorption and CD Spectra of Adenine-Based Oligonucleotides Investigated through QM/MM Simulations (2014) J. Phys. Chem. A, 118, pp. 12021-12030; Plasser, F., Aquino, A.J.A., Hase, W.L., Lischka, H., UV Absorption Spectrum of Alternating DNA Duplexes. Analysis of Excitonic and Charge Transfer Interactions (2012) J. Phys. Chem. A, 116, pp. 11151-11160; Plasser, F., Lischka, H., Electronic Excitation and Structural Relaxation of the Adenine Dinucleotide in Gas Phase and Solution (2013) Photochem. Photobiol. Sci., 12, pp. 1440-1452; Rizzo, A., Coriani, S., Ruud, K., (2012) Computational Strategies for Spectroscopy. from Small Molecules to Nano Systems, pp. 77-135. , In; Barone, V. John Wiley and Sons: Hoboken, NJ, Chapter 2; Buckingham, A.D., Stephens, P.J., Magnetic Optical Activity (1966) Annu. Rev. Phys. Chem., 17, p. 399; Stephens, P.J., Theory of Magnetic Circular Dichroism (1970) J. Chem. Phys., 52, p. 3489; Ganyushin, D., Neese, F., First-Principles Calculations of Magnetic Circular Dichroism Spectra (2008) J. Chem. Phys., 128, p. 114117; Bolvin, H., Theoretical Determination of the Excited States and of g -Factors of the Creutz-Taube Ion, [(NH3)5-Ru-pyrazine-Ru-(NH3)5]5 (2007) Inorg. Chem., 46, p. 417; Kauczor, J., Norman, P., Efficient Calculations of Molecular Linear Response Properties for Spectral Regions (2014) J. Chem. Theory Comput., 10, pp. 2449-2455; Cammi, R., Mennucci, B., Tomasi, J., Ruud, K., Multiconfigurational Self-Consistent Field Linear Response for the Polarizable Continuum Model: Theory and Application to Ground and Excited-State Polarizabilities of Paranitroaniline in Solution (2003) J. Chem. Phys., 119, pp. 5818-5827; Frediani, L., Ågren, H., Ferrighi, L., Ruud, K., Second-Harmonic Generation of Solvated Molecules Using Multiconfigurational Self-Consistent-Field Quadratic Response Theory and the Polarizable Continuum Model (2005) J. Chem. Phys., 123, p. 144117; Milne, B.F., Norman, P., Resonant-Convergent PCM Response Theory Calculations of Second Harmonic Generation in Makaluvamines A-V; Pyrroloiminoquinone Marine Natural Products from Poriferans of Genus Zyzzya (2015) J. Phys. Chem. A; Improta, R., Barone, V., Absorption and Fluorescence Spectra of Uracil in the Gas Phase and in Aqueous Solution: A TD-DFT Quantum Mechanical Study (2004) J. Am. Chem. Soc., 126, pp. 14320-21432; Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Petersson, G.A., (2009) Gaussian 09, , Revision C.3; Gaussian Inc. Wallingford, CT; (2013),, DALTON, a molecular electronic structure program, Release Dalton2013 and LSDalton2013. seeAidas, K., Angeli, C., Bak, K.L., Bakken, V., Bast, R., Boman, L., Christiansen, O., Dahle, P., The Dalton Quantum Chemistry Program System (2014) Wiley Interdiscip. Rev.: Comput. Mol. Sci., 4, pp. 269-284; Rohatgi, A., (2014) WebPlotDigitizer, ,, Version 3.3; Hunter, J.D., Matplotlib: A 2D Graphics Environment (2007) Comput. Sci. Eng., 9, p. 90; Sutherland, J.C., Holmquist, B., Magnetic Circular Dichroism of Biological Molecules (1980) Annu. Rev. Biophys. Bioeng., 9, pp. 293-326; Sutherland, J.C., Griffin, K., Magnetic Circular Dichroism of Adenine, Hypoxanthine, and Guanosine 5′-Diphosphate to 180 nm (1984) Biopolymers, 23, pp. 2715-2724; Improta, R., Barone, V., Excited States Behavior of Nucleobases in Solution: Insights from Computational Studies (2015) Top. Curr. Chem., 355, pp. 329-358; Kaito, A., Hatano, M., Ueda, T., Shibuya, S., CNDO treatment for Faraday B terms of some azaheterocycles (1980) Bull. Chem. Soc. Jpn., 53, pp. 3073-3078; Kistler, K., Matsika, S., Solvatochromic Shifts of Uracil and Cytosine Using a Combined Multireference Configuration Interaction/Molecular Dynamics Approach and the Fragment Molecular Orbital Method (2009) J. Phys. Chem. A, 113, pp. 12396-12403; Blancafort, L., Migani, A., Water Effect on the Excited-state Decay Paths of Singlet Excited Cytosine (2007) J. Photochem. Photobiol., A, 190, pp. 283-290; Bazso, G., Tarczay, G., Fogarasi, G., Szalay, P.G., Tautomers of Cytosine and Their Excited Electronic States: A Matrix Isolation Spectroscopic and Quantum Chemical Study (2011) Phys. Chem. Chem. Phys., 13, pp. 6799-6807; Ferrer, F.J.A., Santoro, F., Improta, R., The Excited State Behavior of Cytosine in the Gas Phase: A TD-DFT Study (2014) Comput. Theor. Chem., pp. 186-194; Avila Ferrer, F.J., Cerezo, J., Stendardo, E., Improta, R., Santoro, F., Insights for an Accurate Comparison of Computational Data to Experimental Absorption and Emission Spectra: Beyond the Vertical Transition Approximation (2013) J. Chem. Theory Comput., 9, pp. 2072-2082; Corni, S., Cammi, R., Mennucci, B., Tomasi, J., Electronic Excitation Energies of Molecules in Solution within Continuum Solvation Models: Investigating the Discrepancy between State-Specific and Linear-Response Methods (2005) J. Chem. Phys., 123, p. 134512; Improta, R., Barone, V., Scalmani, G., Frisch, M., A State-Specific Polarizable Continuum Model Time Dependent Density Functional Theory Method for Excited State Calculations in Solution (2006) J. Chem. Phys., 125, p. 054103; Improta, R., (2012) Computational Strategies for Spectroscopy. from Small Molecules to Nano Systems, pp. 39-76. , In; Barone, V. John Wiley and Sons: Hoboken, NJ, Chapter 1 QC 20170111

Available from: 2016-12-22 Created: 2016-12-21 Last updated: 2017-01-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Norman, P.
In the same journal
Journal of Physical Chemistry A
Theoretical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 2 hits
ReferencesLink to record
Permanent link

Direct link