Change search
ReferencesLink to record
Permanent link

Direct link
Beyond the electric-dipole approximation: A formulation and implementation of molecular response theory for the description of absorption of electromagnetic field radiation
Show others and affiliations
2015 (English)In: Journal of Chemical Physics, ISSN 0021-9606, E-ISSN 1089-7690, Vol. 142, no 24, 244111Article in journal (Refereed) Published
Abstract [en]

We present a formulation of molecular response theory for the description of a quantum mechanical molecular system in the presence of a weak, monochromatic, linearly polarized electromagnetic field without introducing truncated multipolar expansions. The presentation focuses on a description of linear absorption by adopting the energy-loss approach in combination with the complex polarization propagator formulation of response theory. Going beyond the electric-dipole approximation is essential whenever studying electric-dipole-forbidden transitions, and in general, non-dipolar effects become increasingly important when addressing spectroscopies involving higher-energy photons. These two aspects are examined by our study of the near K-edge X-ray absorption fine structure of the alkaline earth metals (Mg, Ca, Sr, Ba, and Ra) as well as the trans-polyenes. In following the series of alkaline earth metals, the sizes of non-dipolar effects are probed with respect to increasing photon energies and a detailed assessment of results is made in terms of studying the pertinent transition electron densities and in particular their spatial extension in comparison with the photon wavelength. Along the series of trans-polyenes, the sizes of non-dipolar effects are probed for X-ray spectroscopies on organic molecules with respect to the spatial extension of the chromophore. © 2015 AIP Publishing LLC.

Place, publisher, year, edition, pages
American Institute of Physics (AIP), 2015. Vol. 142, no 24, 244111
Keyword [en]
Alkaline earth metals, Barium, Chromophores, Electromagnetic fields, Energy dissipation, Organic compounds, Photons, Polarization, Quantum theory, X ray absorption, X ray spectroscopy, Assessment of results, Complex polarization propagator, Electric-dipole approximation, Electromagnetic field radiation, Forbidden transitions, Higher energy photons, Multipolar expansion, X ray absorption fine structures, Electromagnetic field theory, alkaline earth metal, magnesium, polyene, chemical structure, chemistry, conformation, electromagnetic field, photon, radiation absorption, theoretical model, Absorption, Radiation, Metals, Alkaline Earth, Models, Molecular, Models, Theoretical, Molecular Conformation, Polyenes
National Category
Theoretical Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-198712DOI: 10.1063/1.4922697ISI: 000357615100015ScopusID: 2-s2.0-84933574277OAI: oai:DiVA.org:kth-198712DiVA: diva2:1059127
Note

References: Lindon, J.C., Tranter, G.E., Holmes, J.L., (2010) Encyclopedia of Spectroscopy and Spectrometry, , Academic Press, San Diego; Mukamel, S., (1995) Principles of Nonlinear Optical Spectroscopy, 29. , (Oxford University Press, New York); Barron, L.D., (2004) Molecular Light Scattering and Optical Activity, , (Cambridge University Press); Boyd, R.W., (2003) Nonlinear Optics, , (Academic Press); Norman, P., A perspective on nonresonant and resonant electronic response theory for time-dependent molecular properties (2011) Phys. Chem. Chem. Phys., 13, pp. 20519-20535; Schwarzschild, K., Zur elektrodynamik. I. Zwei formen des princips der action in der elektronentheorie Gött. Nachr., Math.-Phys. Kl., 1903, pp. 126-131; Gell-Mann, M., The interpretation of the new particles as displaced charge multiplets (1956) Il Nuovo Cimento, 4, pp. 848-866; George, S.D., Petrenko, T., Neese, F., Time-dependent density functional calculations of ligand K-edge X-ray absorption spectra (2008) Inorg. Chim. Acta, 361, pp. 965-972; Lee, N., Petrenko, T., Bergmann, U., Neese, F., Debeer, S., Probing valence orbital composition with iron Kβ X-ray emission spectroscopy (2010) J. Am. Chem. Soc., 132, pp. 9715-9727; Bernadotte, S., Atkins, A.J., Jacob, C.R., Origin-independent calculation of quadrupole intensities in X-ray spectroscopy (2012) J. Chem. Phys., 137; Craig, D.P., Thirunamachandran, T., (1998) Molecular Quantum Electrodynamics: An Introduction to Radiation-Molecule Interactions, , (Courier Dover Publications); Lindle, D.W., Hemmers, O., Breakdown of the dipole approximation in soft-X-ray photoemission (1999) J. Electron Spectrosc. Relat. Phenom., 100, pp. 297-311; Hemmers, O., Guillemin, R., Lindle, D.W., Nondipole effects in soft X-ray photoemission (2004) Radiat. Phys. Chem., 70, pp. 123-147; Demekhin, P.V., On the breakdown of the electric dipole approximation for hard X-ray photoionization cross sections (2014) J. Phys. B: At., Mol. Opt. Phys., 47; Seabra, G.M., Kaplan, I.G., Ortiz, J.V., Molecular photoionization cross sections in electron propagator theory: Angular distributions beyond the dipole approximation (2005) J. Chem. Phys., 123; Stöhr, J., (1992) NEXAFS Spectroscopy, 25. , (Springer); Glaser, T., Hedman, B., Hodgson, K.O., Solomon, E.I., Ligand K-edge X-ray absorption spectroscopy: A direct probe of ligand-metal covalency (2000) Acc. Chem. Res., 33, pp. 859-868. , pMID: 11123885; Solomon, E.I., Hedman, B., Hodgson, K.O., Dey, A., Szilagyi, R.K., Ligand K-edge X-ray absorption spectroscopy: Covalency of ligand-metal bonds (2005) Coord. Chem. Rev., 249, pp. 97-129; Neese, F., Hedman, B., Hodgson, K.O., Solomon, E.I., Relationship between the dipole strength of ligand pre-edge transitions and metal-ligand covalency (1999) Inorg. Chem., 38, pp. 4854-4860; Kau, L.S., Spira-Solomon, D.J., Penner-Hahn, J.E., Hodgson, K.O., Solomon, E.I., X-ray absorption edge determination of the oxidation state and coordination number of copper. Application to the type 3 site in rhus vernicifera laccase and its reaction with oxygen (1987) J. Am. Chem. Soc., 109, pp. 6433-6442; Lytle, F.W., Greegor, R.B., Panson, A.J., Discussion of X-ray-absorption near-edge structure: Application to Cu in the high-Tc superconductors La1.8Sr0.2CuO4 and y Ba2Cu3O7 (1988) Phys. Rev. B, 37, pp. 1550-1562; Alayon, E.M.C., Nachtegaal, M., Kleymenov, E., Van Bokhoven, J.A., Determination of the electronic and geometric structure of Cu sites during methane conversion over Cu-MOR with X-ray absorption spectroscopy (2013) Microporous Mesoporous Mater., 166, pp. 131-136; Ressler, T., Wienold, J., Jentoft, R.E., Neisius, T., Bulk structural investigation of the reduction of MoO3 with propene and the oxidation of MoO2 with oxygen (2002) J. Catal., 210, pp. 67-83; Rehr, J.J., Albers, R.C., Theoretical approaches to X-ray absorption fine structure (2000) Rev. Mod. Phys., 72, pp. 621-654; Yachandra, V.K., X-ray absorption spectroscopy and applications in structural biology (1995) Methods Enzymol., 246, pp. 638-675; Hocking, R.K., Debeer George, S., Gross, Z., Walker, F.A., Hodgson, K.O., Hedman, B., Solomon, E.I., Fe L-and K-edge XAS of low-spin ferric corrole: Bonding and reactivity relative to low-spin ferric porphyrin (2009) Inorg. Chem., 48, pp. 1678-1688; Debeer George, S., Petrenko, T., Neese, F., Prediction of iron K-edge absorption spectra using time-dependent density functional theory (2008) J. Phys. Chem. A, 112, pp. 12936-12943; Bournel, F., Laffon, C., Parent, P., Tourillon, G., Adsorption of some substituted ethylene molecules on Pt (111) at 95 K part 1: NEXAFS, XPS and UPS studies (1996) Surf. Sci., 350, pp. 60-78; Vahlberg, C., Linares, M., Villaume, S., Norman, P., Uvdal, K., Noradrenaline and a thiol analogue on gold surfaces: An infrared reflection-absorption spectroscopy, X-ray photoelectron spectroscopy, and near-edge X-ray absorption fine structure spectroscopy study (2011) J. Phys. Chem. C, 115, pp. 165-175; Vahlberg, C., Linares, M., Norman, P., Uvdal, K., Phenylboronic ester- and phenylboronic acid-terminated alkanethiols on gold surfaces (2012) J. Phys. Chem. C, 116, pp. 796-806; Vedrinskii, R., Kraizman, V., Novakovich, A., Demekhin, P.V., Urazhdin, S., Ravel, B., Stern, E., Pre-edge fine structure (PEFS) of the K-XAS for the 3d atoms in compounds: A new tool for quantitative atomic structure determination (1997) J. Phys. IV, 7, pp. C2-C107; Vedrinskii, R.V., Kraizman, V.L., Novakovich, A.A., Demekhin, P.V., Urazhdin, S.V., Pre-edge fine structure of the 3d atom K X-ray absorption spectra and quantitative atomic structure determinations for ferroelectric perovskite structure crystals (1998) J. Phys.: Condens. Matter, 10, p. 9561; Messer, B.M., Cappa, C.D., Smith, J.D., Drisdell, W.S., Schwartz, C.P., Cohen, R.C., Saykally, R.J., Local hydration environments of amino acids and dipeptides studied by X-ray spectroscopy of liquid microjets (2005) J. Phys. Chem. B, 109, pp. 21640-21646; Messer, B.M., Cappa, C.D., Smith, J.D., Wilson, K.R., Gilles, M.K., Cohen, R.C., Saykally, R.J., PH dependence of the electronic structure of glycine (2005) J. Phys. Chem. B, 109, pp. 5375-5382; Mahr, H., Two-photon absorption spectroscopy (1975) Quantum Electronics - Nonlinear Optics, Part A, 1. , edited by H. Rabin and C. L. Tang (Academic Press, New York); Norman, P., Bishop, D.M., Jensen, H.J.Aa., Oddershede, J., Near-resonant absorption in the time-dependent self-consistent field and multiconfigurational self-consistent field approximations (2001) J. Chem. Phys., 115, p. 10323; Norman, P., Bishop, D.M., Jensen, H.J.Aa., Oddershede, J., Nonlinear response theory with relaxation: The first-order hyperpolarizability (2005) J. Chem. Phys., 123; Ekström, U., Norman, P., X-ray absorption spectra from the resonant-convergent first-order polarization propagator approach (2006) Phys. Rev. A, 74; Schatz, G.C., Ratner, M.A., (2002) Quantum Mechanics in Chemistry, , (Courier Corporation); Helgaker, T., Coriani, S., Jørgensen, P., Kristensen, K., Olsen, J., Ruud, K., Recent advances in wave function-based methods of molecular-property calculations (2012) Chem. Rev., 112, pp. 543-631; Griffiths, D.J., (2013) Introduction to Electrodynamics, , (Pearson); Olsen, J., Jørgensen, P., Linear and non-linear response functions for an exact state and for an MCSCF state (1985) J. Chem. Phys., 82, pp. 3235-3264; Agranovich, V.M., Ginzburg, V.L., (1966) Spatial Dispersion in Crystal Optics and the Theory of Excitons, , (Interscience London); Bechstedt, F., (2014) Many-Body Approach to Electronic Excitations, , (Springer); Davydov, A.S., (1976) Quantum Mechanics, , 2nd ed. (Pergamon, Oxford); Bast, R., Juselius, J., Saue, T., 4-component relativistic calculation of the magnetically induced current density in the group 15 heteroaromatic compounds (2009) Chem. Phys., 356, pp. 187-194; Merzbacher, E., (1970) Quantum Mechanics, , (Wiley); Bransden, B.H., Joachain, C.J., (2003) Physics of Atoms and Molecules, , 2nd ed. (Pearson Education India); http://daltonprogram.org/, Dalton, A Molecular Electronic Structure Program, Release DALTON2013.0, 2013, seeKauczor, J., Jørgensen, P., Norman, P., On the efficiency of algorithms for solving Hartree-Fock and Kohn-Sham response equations (2011) J. Chem. Theory Comput., 7, pp. 1610-1630; Kauczor, J., Norman, P., Efficient calculations of molecular linear response properties for spectral regions (2014) J. Chem. Theory Comput., 10, pp. 2449-2455; Sałek, P., Vahtras, O., Helgaker, T., Ågren, H., Density-functional theory of linear and nonlinear time-dependent molecular properties (2002) J. Chem. Phys., 117, pp. 9630-9645; Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Fox, D.J., (2009) Gaussian 09 Revision D.01, , Gaussian Inc., Wallingford, CT; Stephens, P.J., Devlin, F.J., Chabalowski, C.F., Frisch, M.J., Ab initio calculation ofvibrational absorption and circular dichroism spectra using density functional force fields (1994) J. Phys. Chem., 98, pp. 11623-11627; Becke, A.D., Density-functional thermochemistry. III. the role of exact exchange (1993) J. Chem. Phys., 98, pp. 5648-5652; Vosko, S.H., Wilk, L., Nusair, M., Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis (1980) Can. J. Phys., 58, pp. 1200-1211; Lee, C., Yang, W., Parr, R.G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density (1988) Phys. Rev. B, 37, pp. 785-789; Dunning, T.H., Gaussian basis sets for use in correlated molecular calculations. I. the atoms boron through neon and hydrogen (1989) J. Chem. Phys., 90, pp. 1007-1023; Yanai, T., Tew, D.P., Handy, N.C., A new hybrid exchange-correlation functional using the coulomb-attenuating method (CAM-B3LYP) (2004) Chem. Phys. Lett., 393, pp. 51-57; Woon, D.E., Dunning, Jr.T.H., Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties (1994) J. Chem. Phys., 100, pp. 2975-2988; Roos, B.O., Veryazov, V., Widmark, P.-O., Relativistic atomic natural orbital type basis sets for the alkaline and alkaline-earth atoms applied to the ground-state potentials for the corresponding dimers (2004) Theor. Chim. Acta, 111, pp. 345-351; Kramida, A., Ralchenko, Yu., Reader, J., http://physics.nist.gov/asd, NIST ASD Team, NIST Atomic Spectra Database, version 5.2 (National Institute of Standards and Technology, Gaithersburg, MD, 2014), available online atWood, C.S., Bennett, S.C., Cho, D., Masterson, B.P., Roberts, J.L., Tanner, C.E., Wieman, C.E., Measurement of parity nonconservation and an anapole moment in cesium (1997) Science, 275, pp. 1759-1763; McMurchie, L.E., Davidson, E.R., One- and two-electron integrals over Cartesian Gaussian functions (1978) J. Comput. Phys., 26, pp. 218-231; Helgaker, T., Jørgensen, P., Olsen, J., (2000) Molecular Electronic-Structure Theory, , (Wiley); Dyall, K.G., Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the 4s, 5s, 6s, and 7s elements (2009) J. Phys. Chem. A, 113, pp. 12638-12644; Visscher, L., Approximate molecular relativistic Dirac-Coulomb calculations using a simple Coulombic correction (1997) Theor. Chem. Acc., 98, pp. 68-70; Bearden, J.A., Burr, A., Reevaluation of X-ray atomic energy levels (1967) Rev. Mod. Phys., 39, pp. 125-142. QC 20170117

Available from: 2016-12-22 Created: 2016-12-21 Last updated: 2017-01-17Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Norman, P.
In the same journal
Journal of Chemical Physics
Theoretical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

ReferencesLink to record
Permanent link

Direct link