Change search
ReferencesLink to record
Permanent link

Direct link
Resonant-convergent PCM response theory for the calculation of second harmonic generation in makaluvamines A-V: Pyrroloiminoquinone marine natural products from poriferans of genus Zyzzya
2015 (English)In: Journal of Physical Chemistry A, ISSN 1089-5639, E-ISSN 1520-5215, Vol. 119, no 21, 5368-5376 p.Article in journal (Refereed) Published
Abstract [en]

The first-order hyperpolarizability, β, has been calculated for a group of marine natural products, the makaluvamines. These compounds possess a common cationic pyrroloiminoquinone structure that is substituted to varying degrees. Calculations at the MP2 level indicate that makaluvamines possessing phenolic side chains conjugated with the pyrroloiminoquinone moiety display large β values, while breaking this conjugation leads to a dramatic decrease in the calculated hyperpolarizability. This is consistent with a charge-transfer donor-π-acceptor (D-π-A) structure type, characteristic of nonlinear optical chromophores. Dynamic hyperpolarizabilities calculated using resonance-convergent time-dependent density functional theory coupled to polarizable continuum model (PCM) solvation suggest that significant resonance enhancement effects can be expected for incident radiation with wavelengths around 800 nm. The results of the current work suggest that the pyrroloiminoquinone moiety represents a potentially useful new chromophore subunit, in particular for the development of molecular probes for biological imaging. The introduction of solvent-solute interactions in the theory is conventionally made in a density matrix formalism, and the present work will provide detailed account of the approximations that need to be introduced in wave function theory and our program implementation. The program implementation as such is achieved by a mere combination of existing modules from previous developments, and it is here only briefly reviewed. © 2015 American Chemical Society.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2015. Vol. 119, no 21, 5368-5376 p.
Keyword [en]
Charge transfer, Chromophores, Continuum mechanics, Harmonic generation, Nonlinear optics, Organic polymers, Radiation effects, Wave functions, Density matrix formalism, Dynamic hyperpolarizabilities, First-order hyperpolarizability, Marine natural products, Nonlinear optical chromophore, Polarizable continuum model, Solvent-solute interactions, Time dependent density functional theory, Density functional theory, biological product, pyrrole derivative, pyrroloiminoquinone derivative, solvent, animal, chemical model, chemical structure, chemistry, computer simulation, nonlinear system, photochemistry, sea, sponge (Porifera), Animals, Biological Products, Models, Chemical, Molecular Structure, Nonlinear Dynamics, Oceans and Seas, Photochemical Processes, Porifera, Pyrroles, Pyrroloiminoquinones, Solvents
National Category
Theoretical Chemistry
URN: urn:nbn:se:kth:diva-198713DOI: 10.1021/jp5102362ISI: 000355495100033ScopusID: 2-s2.0-84930685607OAI: diva2:1059129

References: Allen, M.J., Jaspars, M., Realizing the Potential of Marine Biotechnology: Challenges & Opportunities (2009) Indian J. Biotechnol., 5, pp. 77-83; Radjasa, O.K., Vaske, Y.M., Navarro, G., Vervoort, H.C., Tenney, K., Linington, R.G., Crews, P., Highlights of Marine Invertebrate-Derived Biosynthetic Products: Their Biomedical Potential and Possible Production by Microbial Associants (2011) Bioorg. Med. Chem., 19, pp. 6658-6674; Asselberghs, I., Flors, C., Ferrighi, L., Botek, E., Champagne, B., Mizuno, H., Ando, R., Clays, K., Second-Harmonic Generation in GFP-like Proteins (2008) J. Am. Chem. Soc., 130, pp. 15713-15719; Deniset-Besseau, A., Duboisset, J., Benichou, E., Hache, F., Brevet, P.-F., Schanne-Klein, M.-C., Measurement of the Second-Order Hyperpolarizability of the Collagen Triple Helix and Determination of Its Physical Origin (2009) J. Phys. Chem. B, 113, pp. 13437-13445; Perez-Moreno, J., Asselberghs, I., Song, K., Clays, K., Zhao, Y., Nakanishi, H., Okada, S., Je, J., Combined Molecular and Supramolecular Bottom-Up Nanoengineering for Enhanced Nonlinear Optical Response: Experiments, Modeling, and Approaching the Fundamental Limit (2007) J. Chem. Phys., 126, p. 074705; Matczyszyn, K., Olesiak-Banska, J., DNA as Scaffolding for Nanophotonic Structures (2012) J. Nanophoton., 6, pp. 0645051-06450515; De Meulenaere, E., Nguyen Bich, N., De Wergifosse, M., Van Hecke, K., Van Meervelt, L., Vanderleyden, J., Champagne, B., Clays, K., Improving the Second-Order Nonlinear Optical Response of Fluorescent Proteins: The Symmetry Argument (2013) J. Am. Chem. Soc., 135, pp. 4061-4069; Milne, B.F., Norman, P., Nogueira, F., Cardoso, C., Marine Natural Products from the Deep Pacific as Potential Non-Linear Optical Chromophores (2013) Phys. Chem. Chem. Phys., 15, pp. 14814-14822; Richter, H., (2011) Materials for Key Enabling Technologies, , 2nd ed. European Science Foundation: Brussels; (2012) A European Strategy for Key Enabling Technologies - A Bridge to Growth and Jobs, , European Commission: Brussels; Hemminger, J., Fleming, G.R., Ratner, M.A., (2007) Directing Matter and Energy: Five Challenges for Science and the Imagination: A Report from the Basic Energy Science Advisory Committee, , U.S. Department of Energy: Washington, DC; Fleming, G.R., Ratner, M.A., Grand Challenges in Basic Energy Sciences (2008) Phys. Today, 61, pp. 28-33; Prasad, P.N., Williams, D.J., (1991) Introduction to Nonlinear Optical Effects in Molecules and Polymers, , 1st ed. John Wiley & Sons, Inc. New York; Marder, S.R., Organic Nonlinear Optical Materials: Where We Have Been and Where We Are Going (2006) Chem. Commun., pp. 131-134; Reeve, J.E., Anderson, H.L., Clays, K., Dyes for Biological Second Harmonic Generation Imaging (2010) Phys. Chem. Chem. Phys., 12, pp. 13484-13498; Zernike, F., Midwinter, J.E., (1973) Applied Nonlinear Optics, , Dover Publications: New York; Butcher, P.N., Cotter, D.D., (1990) The Elements of Nonlinear Optics, , Cambridge University Press: New York; Chang, L.C., Otero-Quintero, S., Hooper, J.N.A., Bewley, C.A., Batzelline D and Isobatzelline e from the Indopacific Sponge Zyzzya fuliginosa (2002) J. Nat. Prod., 65, pp. 776-778; Dias, N., Vezin, H., Lansiaux, A., Bailly, C., (2005) DNA Binders and Related Subjects, 253, pp. 89-108. , Waring, M. J. Chaires, J. B. Topics in Current Chemistry; Springer: Berlin; Izawa, T., Nishiyama, S., Yamamura, S., Total Syntheses of Makaluvamines A, B, C, D and E, Cytotoxic Pyrroloiminoquinone Alkaloids Isolated from Marine Sponge Bearing Inhibitory Activities Against Topoisomerase II (1994) Tetrahedron, 50, pp. 13593-13600; Schmidt, E.W., Harper, M.K., Faulkner, D.J., Makaluvamines H-M and Damirone C from the Pohnpeian Sponge Zyzzya fuliginosa (1995) J. Nat. Prod., 58, pp. 1861-1867; Shinkre, B.A., Raisch, K.P., Fan, L., Velu, S.E., Analogs of the Marine Alkaloid Makaluvamines: Synthesis, Topoisomerase II Inhibition, and Anticancer Activity (2007) Bioorg. Med. Chem. Lett., 17, pp. 2890-2893; Utkina, N.K., Makarchenko, A.E., Denisenko, V.A., Zyzzyanones B-D, Dipyrroloquinones from the Marine Sponge Zyzzya fuliginosa (2005) J. Nat. Prod., 68, pp. 1424-1427; Venables, D.A., Concepción, G.P., Matsumoto, S.S., Barrows, L.R., Ireland, C.M., Makaluvamine N: A New Pyrroloiminoquinone from Zyzzya fuliginosa (1997) J. Nat. Prod., 60, pp. 408-410; Norman, P., Bishop, D.M., Jensen, H.J.Aa., Oddershede, J., Nonlinear Response Theory with Relaxation: The First-Order Hyperpolarizability (2005) J. Chem. Phys., 123, p. 194103; Orr, B.J., Ward, J.F., Perturbation Theory of the Nonlinear Optical Polarization of an Isolated System (1971) Mol. Phys., 20, p. 513; Boyd, R.W., (2003) Nonlinear Optics, , Academic Press: London; Bloembergen, N., Lotem, H., Lynch, R.T., Jr., Lineshapes in Coherent Raman Scattering (1977) Indian J. Pure Appl. Phys., 16, p. 151; Norman, P., A Perspective on Nonresonant and Resonant Electronic Response Theory for Time-Dependent Molecular Properties (2011) Phys. Chem. Chem. Phys., 13, pp. 20519-20535; Pedersen, M.N., Hedegård, E.D., Olsen, J.M.H., Kauczor, J., Norman, P., Kongsted, J., Damped Response Theory in Combination with Polarizable Environments: The Polarizable Embedding Complex Polarization Propagator Method (2014) J. Chem. Theory Comput., 10, pp. 1164-1171; Tomasi, J., Maurizio, P., Molecular Interactions in Solution: An Overview of Methods Based on Continuous Distributions of the Solvent (1994) Chem. Rev., 94, pp. 2027-2094; Coitino, E.L., Tomasi, J., Solvent Effects on the Internal Rotation of Neutral and Protonated Glyoxal (1996) Chem. Phys., 204, pp. 391-402; Coitino, E.L., Tomasi, J., Cammi, R., On the Evaluation of the Solvent Polarization Apparent Charges in the Polarizable Continuum Model - A New Formulation (1995) J. Comput. Chem., 16, pp. 20-30; Tomasi, J., Mennucci, B., Cammi, R., Quantum mechanical continuum solvation models (2005) Chem. Rev., 105, pp. 2999-3093; Cramer, R., Truhlar, D.G., Implicit Solvation Models: Equilibria, Structure, Spectra, and Dynamics (1999) Chem. Rev., 99, pp. 2161-2200; Mikkelsen, K.V., Correlated Electronic Structure Nonlinear Response Methods for Structured Environments (2006) Annu. Rev. Phys. Chem., 57, pp. 365-402; Frediani, L., Ågren, H., Ferrighi, L., Ruud, K., Second-Harmonic Generation of Solvated Molecules Using Multiconfigurational Self-Consistent-Field Quadratic Response Theory and the Polarizable Continuum Model (2005) J. Chem. Phys., 123, p. 144117; Sylvester-Hvid, K.O., Mikkelsen, K.V., Jonsson, D., Norman, P., Ågren, H., Nonlinear Optical Response of Molecules in a Nonequilibrium Solvation Model (1998) J. Chem. Phys., 109, pp. 5576-5584; Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Su, S.J., General Atomic and Molecular Electronic-Structure System (1993) J. Comput. Chem., 14, pp. 1347-1363; Labidi, S.N., Kanoun, M.B., De Wergifosse, M., Champagne, B., Theoretical Assessment of New Molecules for Second-Order Nonlinear Optics (2011) Int. J. Quantum Chem., 111, pp. 1583-1595; Becke, A.D., Density-Functional Thermochemistry. III. the Role of Exact Exchange (1993) J. Chem. Phys., 98, pp. 5648-5652; Stephens, P.J., Devlin, F.J., Chabalowski, C.F., Frisch, M.J., Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields (1994) J. Phys. Chem., 98, pp. 11623-11627; Weigend, F., Ahlrichs, R., Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy (2005) Phys. Chem. Chem. Phys., 7, pp. 3297-3305; Rappoport, D., Furche, F., Property-Optimized Gaussian Basis Sets for Molecular Response Calculations (2010) J. Chem. Phys., 133, p. 134105; Plaquet, A., Guillaume, M., Champagne, B., Castet, F., Ducasse, L., Pozzo, J.-L., Rodriguez, V., In Silico Optimization of Merocyanine-Spiropyran Compounds as Second-Order Nonlinear Optical Molecular Switches (2008) Phys. Chem. Chem. Phys., 10, pp. 6223-6232; Botek, E., D'Antuono, P., Jacques, A., Carion, R., Champagne, B., Maton, L., Taziaux, D., Habib-Jiwan, J.-L., Theoretical and Experimental Investigation of the Structural and Spectroscopic Properties of Coumarin 343 Fluoroionophores (2010) Phys. Chem. Chem. Phys., 12, pp. 14172-14187; Bogdan, E., Rougier, L., Ducasse, L., Champagne, B., Castet, F., Nonlinear Optical Properties of Flavylium Salts: A Quantum Chemical Study (2010) J. Phys. Chem. A, 114, pp. 8474-8479; De Wergifosse, M., Champagne, B., Electron Correlation Effects on the First Hyperpolarizability of Push-Pull π-Conjugated Systems (2011) J. Chem. Phys., 134, p. 074113; Hammond, J.R., Kowalski, K., Parallel Computation of Coupled-Cluster Hyperpolarizabilities (2009) J. Chem. Phys., 130, p. 194108; Milne, B.F., Nogueira, F., Cardoso, C., Theoretical Study of Heavy-Atom Tuning of Nonlinear Optical Properties in Group 15 Derivatives of N,N,N-Trimethylglycine (Betaine) (2013) Dalton Trans., 42, pp. 3695-3703; Peach, M.J.G., Benfield, P., Helgaker, T., Tozer, D.J., Excitation Energies in Density Functional Theory: An Evaluation and a Diagnostic Test (2008) J. Chem. Phys., 128, p. 044118; Peach, M.J.G., Sueur, C.R.L., Ruud, K., Guillaume, M., Tozer, D.J., TDDFT Diagnostic Testing and Functional Assessment for Triazene Chromophores (2009) Phys. Chem. Chem. Phys., 11, pp. 4465-4470; (2013) DALTON, A Molecular Electronic Structure Program, ,, release DALTON2013.0; Aidas, K., Angeli, C., Bak, K.L., Bakken, V., Bast, R., Boman, L., Christiansen, O., Dahle, P., The Dalton Quantum Chemistry Program System (2013) WIREs Comput. Mol. Sci., 4, pp. 269-284; Dunning, T.H., Jr., Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. the Atoms Boron Through Neon and Hydrogen (1989) J. Chem. Phys., 90, pp. 1007-1023; Woon, D.E., Dunning, T.H., Jr., Gaussian Basis Sets for Use in Correlated Molecular Calculations. IV. Calculation of Static Electrical Response Properties (1994) J. Chem. Phys., 100, pp. 2975-2988; Li, Q., Wu, K., Wei, Y., Sa, R., Cui, Y., Lu, C., Zhub, J., Hea, J., Second-order nonlinear optical properties of transition metal clusters [MoS4Cu4X2Py2] (M = Mo, W; X = Br, I) (2009) Phys. Chem. Chem. Phys., 11, pp. 4490-4497; Hohenberg, P., Kohn, W., Inhomogeneous Electron Gas (1964) Phys. Rev., 136, pp. 864-871; Kohn, W., Sham, L.J., Self-Consistent Equations Including Exchange and Correlation Effects (1965) Phys. Rev., 140, p. 1133; Runge, E., Gross, E.K.U., Density-Functional Theory for Time-Dependent Systems (1984) Phys. Rev. Lett., 52, p. 997; Yanai, T., Tew, D.P., Handy, N.C., A New Hybrid Exchange-Correlation Functional Using the Coulomb-Attenuating Method (CAM-B3LYP) (2004) Chem. Phys. Lett., 393, pp. 51-57. QC 20170112

Available from: 2016-12-22 Created: 2016-12-21 Last updated: 2017-01-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Norman, P.
In the same journal
Journal of Physical Chemistry A
Theoretical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

ReferencesLink to record
Permanent link

Direct link