Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Surface-Enhanced Raman Scattering Due to Charge-Transfer Resonances: A Time-Dependent Density Functional Theory Study of Ag13-4-Mercaptopyridine
2016 (English)In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 120, no 37, 20721-20735 p.Article in journal (Refereed) Published
Abstract [en]

We have used time-dependent density functional theory in conjunction with the CAM-B3LYP functional and MWB28/aug-cc-pVDZ basis set to determine non-, near-, and on-resonance Raman spectra for a complex formed by 4-mercaptopyridine (4-Mpy) binding with a Ag13 cluster via the thiolate Ag-S bond. Geometry optimizations of the Ag13-4-Mpy complex showed an on-top structure directly bound to one Ag atom with the ring of the molecule almost flat with respect to two Ag atoms of the complex. The corresponding B3LYP/MWB28/aug-cc-pVDZ geometry is also an on-top structure directly bound to one Ag atom, but the molecule is directed away from the surface. The near-resonance Raman calculations were carried out in the infinite lifetime approximation, while the on-resonant Raman excitation profiles were calculated with the complex polarization propagator (CPP) approach, introducing a half width at half-maximum spectral broadening of 0.2 eV. Calculation of the UV-vis spectra of the isolated 4-Mpy and of the Ag13-4-Mpy complex showed that binding shifts the spectra from deep in the UV to the visible region. Calculation of the near-resonance Raman spectra of the two structures of the complex at 410 (3.025 eV) and 425 nm (2.918 eV) showed a strong enhancement. A very large variation across vibrational modes by a factor of at least 103 was found for both the static chemical enhancement and charge-transfer (CT) enhancement mechanisms. This large variation in enhancement factor indicates that B-term Herzberg-Teller scattering is occurring because inactive or very low intensity modes in the static spectra of the molecule are much stronger in both the static and near-resonance spectra of the complex. From the excitation profile using the CPP method, an overall surface enhancement on the order 103 or higher was found for individual modes on excitation into a CT excited state. © 2016 American Chemical Society.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2016. Vol. 120, no 37, 20721-20735 p.
Keyword [en]
Atoms, Bins, Charge transfer, Excited states, Molecules, Raman scattering, Resonance, Surface scattering, Chemical enhancements, Complex polarization propagator, Enhancement mechanism, Geometry optimization, Half width at half maximums, Resonance Raman spectra, Surface enhanced Raman Scattering (SERS), Time dependent density functional theory, Density functional theory
National Category
Theoretical Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-198697DOI: 10.1021/acs.jpcc.6b01961ISI: 000384034600028ScopusID: 2-s2.0-84988583434OAI: oai:DiVA.org:kth-198697DiVA: diva2:1059143
Note

References: Fleischmann, M., Hendra, P.J., McQuillan, A.J., Raman Spectra of Pyridine Adsorbed at a Silver Electrode (1974) Chem. Phys. Lett., 26, pp. 163-166; Jeanmaire, D.L., Van Duyne, R.P., Surface Raman Spectroelectrochemistry Part I, Heterocyclic, Aromatic, and Aliphatic Amines Adsorbed on an Anodized Silver Electrode (1977) J. Electroanal. Chem. Interfacial Electrochem., 84, pp. 1-20; Albrecht, M.G., Creighton, J.A., Anomalously Intense Raman Spectra of Pyridine at a Silver Electrode (1977) J. Am. Chem. Soc., 99, pp. 5215-5217; Van Duyne, R.P., Laser Excitation of Raman Scattering from Adsorbed Molecules on Electrode Surfaces (1979) Chemical and Biochemical Applications of Lasers, 4, pp. 101-252. , Moore, C. B. Academic: New York, Vol. Chapter 5; Furtak, T.E., Optical and Electronic Resonance: The Underlying Sourses of Surface Enhanced Raman Scattering (1984) Advances in Laser Spectroscopy, 2, pp. 175-205. , Garetz, B. A. Lombardi, J. R. Wiley: Chichester, U.K; Birke, R.L., Lombardi, J.R., Surface-Enhanced Raman Scattering (1988) Spectroelectrochemistry, Theory and Practice, pp. 263-348. , Gale, R. J. Plenum: New York, Ch. 6; Moskovits, A., Surface-enhanced Raman Spectroscopy (1985) Rev. Mod. Phys., 57, p. 783; Campion, A., Kambhampati, P., Surface-Enhanced Raman Scattering. Chem (1998) Chem. Soc. Rev., 27, pp. 241-250; Schlucker, S., Angew, Surface-Enhanced Raman Spectroscopy: Concepts and Chemical Applications (2014) Angew. Chem., Int. Ed., 53, p. 4756; Nie, S., Emory, S.R., Probing Single Molecules and Single Nanoparticles by Surface-Enhanced-Raman Scattering (1997) Science, 275, pp. 1102-1106; Kneipp, K., Wang, Y., Kneipp, H., Perelman, L., Itzkan, I., Dasari, R.R., Feld, M.S., Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) (1997) Phys. Rev. Lett., 78, p. 1667; Xu, H., Bjerneld, E., Käll, M., Börjesson, L., Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering (1999) Phys. Rev. Lett., 83, p. 4357; Michaels, A.M., Jiang, J., Brus, L.E., Ag Nanocrystal Junctions as the Site for Surface-Enhanced Raman Scattering of Single Rhodamine 6G Molecules (2000) J. Phys. Chem. B, 104, pp. 11965-11971; Bosnick, K.A., Jiang, J., Brus, L.E., Fluctuations and Local Symmetry in Single-Molecule Rhodamine 6G Raman Scattering on Silver Nanocrystal Aggregates (2002) J. Phys. Chem. B, 106, p. 8096; Lombardi, J.R., Birke, R.L., Sanchez, L., Bernard, I., Sun, S.C., The Effect of Molecular Structure on Voltage Induced Shifts of Charge Transfer Excitation in Surface Enhanced Raman Scattering (1984) Chem. Phys. Lett., 104, pp. 240-247; Furtak, T.E., Macomber, S.H., Voltage Induced Shifting of Charge-Transfer Excitations and Their Role in Surface-Enhanced Raman Scattering (1983) Chem. Phys. Lett., 95, pp. 328-332; Arenas, J.F., Tocón, I.L., Otero, J.C., Marcos, J.I., Charge Transfer Process in Surface-Enhanced Raman Scattering:Franck-Condon Active Vibrations of Pyridine (1996) J. Phys. Chem., 100, pp. 9254-9261; Arenas, J.F., Soto, J., Tocón, I.L., Fernández, D.J., Otero, J.C., Marcos, J.I., The Role of Charge Transfer States of the Metal-Adsorbate Complex in Surface-Enhanced Raman Scattering (2002) J. Chem. Phys., 116, pp. 7207-7216; Lombardi, J.R., Birke, R.L., Lu, T., Xu, J., Charge-Transfer Theory of Surface Enhanced Raman Spectroscopy:Herzberg-Teller Contribution (1986) J. Chem. Phys., 84, pp. 4174-4180; Albrecht, A.C., On the Theory of Raman Intensities (1961) J. Chem. Phys., 34, pp. 1476-1483; Lombardi, J.R., Birke, R.L., A Unified Approach to Surface-Enhanced Raman Scattering (2008) J. Phys. Chem. C, 112, pp. 5605-5617; Lombardi, J.R., Birke, R.L., A Unified View of Surface-Enhanced Raman Scattering (2009) Acc. Chem. Res., 42, pp. 734-742; Zhao, L., Jensen, L., Schatz, G.C., Pyridine-Ag20 Cluster: A Model System for Studying Surface-Enhanced Raman Scattering (2006) J. Am. Chem. Soc., 128, pp. 2911-2919; Jensen, L., Schatz, G.C., Zhao, L., Size-Dependence of the Enhanced Raman Scattering of Pyridine Adsorbed on Agn (n = 2-8, 20) Clusters (2007) J. Phys. Chem. C, 111, pp. 4756-4764; Birke, R.L., Znamenskiy, V., Lombardi, J.R., A Charge-Transfer Surface Enhanced Raman Scattering Model from Time-Dependent Density Functional Ttheory Calculations on a Ag10-Pyridine Complex (2010) J. Chem. Phys., 132, p. 214707; Morton, S.M., Jensen, L., Understanding the Molecule-Surface Chemical Coupling in SERS (2009) J. Am. Chem. Soc., 131, pp. 4090-4098; Moore, J.E., Morton, S.M., Jensen, L., Importance of Correctly Describing Charge-Transfer Excitations for Understanding the Chemical Effect in SERS (2012) J. Phys. Chem. Lett., 3, pp. 2470-2475; Zhang, L., Bai, Y., Shang, Z., Zhang, Y., Mo, Y., Experimental and Theoretical Studies of Raman Spectroscopy on 4-mercaptopyridine Aqueous Solution and 4-Mercaptopyridine/Ag Complex System (2007) J. Raman Spectrosc., 38, p. 1106; Guo, H., Ding, L., Zhang, T., Mo, Y., 4-Mercaptopyridine Adsorbed on Pure Palladium Island Films: A Combined SERS and DFT Investigation (2013) J. Mol. Struct., 1035, pp. 231-235; Kucera, J., Gross, A., Adsorption of 4-Mercaptopyridine on Au(III): A Periodic DFT Study (2008) Langmuir, 24, pp. 13985-13992; Birke, R.L., Lombardi, J.R., Simulation of SERS by a DFT Study; A Comparison of Static and Near-Resonance Raman for 4-mercaptopyridine on Small Ag Clusters (2015) J. Opt., 17, p. 114004; Liu, L., Chen, D., Ma, H., Liang, W.-Z., Spectral Characteristics of Chemical Enhancement on SERS of Benzene-like Derivatives: Frank-Condon and Herrzberg-Terller Contributions (2015) J. Phys. Chem. C, 119, pp. 27609-27619; Hu, J., Zhao, B., Xu, W., Li, B., Fan, Y., Surface-enhanced Raman Spectroscopy Study on the Structure Changes of 4-Mercaptopyridine Adsorbed on Silver Substrates and Silver Colloids (2002) Spectrochim. Acta, Part A, 58, pp. 2827-2834; Baldwin, J., Schuhler, N., Butler, I.S., Andrews, M.P., Integrated Optics Evanescent Wave Surface Enhanced Raman Scattering (IO-EWSERS) of Mercaptopyridines on a Planar Optical Chemical Bench: Binding of Hydrogen and Copper Ion (1996) Langmuir, 12, pp. 6389-6398; Chao, Y., Zhou, Q., Li, Y., Yan, Y., Wu, Y., Zheng, J., Potential Dependent Surface-enhanced Raman Scattering of 4-Mercaptopyridine on Electrochemically Roughened Silver Electrodes (2007) J. Phys. Chem. C, 111, pp. 16990-16995; Wang, Z., Rothberg, L., Origins of Blinking in Single-Molecule Raman Spectroscopy (2005) J. Phys. Chem. B, 109, pp. 3387-3391; Gardner, A.M., Wright, T.G., Consistent Assignments of Vibrations in Monosubstitutedbenzenes (2011) J. Chem. Phys., 135, p. 114305; Zayak, A.T., Hu, Y.S., Choo, H., Bokor, J., Cabrini, S., Schuck, P.J., Neaton, J.B., Chemical Raman Enhancement of Organic Adsorbates on Metal Surfaces (2011) Phys. Rev. Lett., 106, p. 083003; Valley, N., Greeneltch, N., Van Duyne, R.P., Schatz, G.C., A Look at the Origin and Magnitude of the Chemical Contribution to the Enhancement Mechanism of Surface-Enhanced Raman Spectroscopy (SERS): Theory and Experiment (2013) J. Phys. Chem. Lett., 4, pp. 2599-2604; Saikin, S.K., Olivares-Amaya, R., Rappoport, D., Stopa, M., Aspuru-Guzik, A., On the Chemical Bonding Effects in the Raman Response: Benzenethol Adsorbed on Silver Clusters (2009) Phys. Chem. Chem. Phys., 11, pp. 9401-9411; Jensen, J., Zhao, L., Autschbach, J., Schatz, G.C., Theory and Method for Calculating Resonance Raman Scattering from Resonance Polarizability Derivatives (2005) J. Chem. Phys., 123, p. 174110; Jensen, J., Autschbach, J., Schatz, G.C., Finite lifetime Effects on the Polarizability Within Time-dependent Density-functional Theory (2005) J. Chem. Phys., 122, p. 224115; Kane, K.A., Jensen, L., Calculation of Absolute Resonance Raman Intensities: Vibronic Theory vs Short-Time Approximation (2010) J. Phys. Chem. C, 114, pp. 5540-5546; Hermida-Ramon, J.M., Guerrini, L., Alvarez-Puebla, R.A., Analysis of the SERS Spectrum by Theoretical Methodology: Evaluating a Classical Dipole Model and the Detuning of the Excitation Frequency (2013) J. Phys. Chem. A, 117, pp. 4584-4590; Egidi, F., Bloino, J., Cappelli, C., Barone, V.A., Robust and Effective Time-Independent Route to the Calculation of Resonance Raman Spectra of Large Molecules in Condensed Phases with Inclusion of Duschinsky and Herzberg-Teller, Anharmonic, and Environmental Effects (2014) J. Chem. Theory Comput., 10, pp. 346-363; Ma, H., Liu, J., Liang, W.-Z., Time-Dependent Approach to Resonance Raman Spectra Including Duschinsky Rotation and Herzberg-Teller Effects: Formalism and Its Realistic Applications (2012) J. Chem. Theory Comput., 8, pp. 4474-4482; Baiardi, A., Bloino, J., Barone, V., A General Time-Dependent Route to Resonance-Raman Spectroscopy Including Franck-Condon, Herzberg-Teller, Duschinsky Effects (2014) J. Chem. Phys., 141, p. 114108; Liu, S., Zhao, X., Li, Y., Zhao, X., Chen, M., Density Functional Theory Study on Herzberg-Teller Contributions in Raman Scattering from 4-Aminothiolphenol-Metal Complex and Metal-4-Aminothiolphenol-Metal Junctions (2009) J. Chem. Phys., 130, p. 234509; Zhao, L.-B., Huang, R., Huang, Y.-F., Wu, D.-Y., Ren, B., Tian, Z.-Q., Photon-Driven and Herzberg-Teller Vibronic Coupling Mechanisms in Surface-Enhanced Raman Scattering of p-Aminothiolphenol Adsorbed on Coinage Metal Surfaces: A Density Functional Study (2011) J. Chem. Phys., 135, p. 134707; Norman, P., Bishop, D.M., Jensen, H.J.A., Oddershede, J., Near-Resonant Absorption in the Time-Dependent Self-Consistent Field and Multiconfigurational Self-Consistent Field Approximations (2001) J. Chem. Phys., 115, p. 10323; Norman, P., Bishop, D.M., Jensen, H.J.A., Oddershede, J., Nonlinear Response Theory with Relaxation: The First-Order Hyperpolarizability (2005) J. Chem. Phys., 123, p. 194103; Lombardi, J.R., Davis, B., Periodic Properties of Force Constants of Small Transition-Metal Lanthanide Clusters (2002) Chem. Rev., 102, pp. 2431-2460; Pereiro, M., Baldomir, D., Structure of Small Silver Clusters and Static Response to an External Electric Field (2007) Phys. Rev. A: At., Mol., Opt. Phys., 75, p. 033202; Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Petersson, G.A., (2013) Gaussian 09, , revision D.01; Gaussian, Inc. Wallingford, CT; Casida, M.E., (1995) Recent Advances in Density Functional Methods, pp. 155-192. , Chong, D. P. World Scientific Pub. Co. Singapore, Part I, Ch. 5; Becke, A.D., Density-functional Thermochemistry. III. the Role of Exact Exchange (1993) J. Chem. Phys., 98, p. 5648; Stephens, P.J., Devlin, F.J., Chabalowski, C.F., Frisch, M.J., Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields (1994) J. Phys. Chem., 98, pp. 11623-11627; Yanai, T., Tew, D., Handy, N., A New Hybrid Exchange-Correlation Functional Using the Coulomb-Attenuating Method (CAM-B3LYP) (2004) Chem. Phys. Lett., 393, pp. 51-57; Kauczor, J., Jørgensen, P., Norman, P., On the Efficiency of Algorithms for Solving Hartree-Fock and Kohn-Sham Response Equations (2011) J. Chem. Theory Comput., 7, pp. 1610-1630; Kauczor, J., Norman, P., Efficient Calculations of Molecular Linear Response Properties for Spectral Regions (2014) J. Chem. Theory Comput., 10, pp. 2449-2455; Mohammed, A., Ågren, H., Norman, P., Resonance Enhanced Raman Scattering from the Complex Electric-Dipole Polarizability: A Theoretical Study on N2 (2009) Chem. Phys. Lett., 468, pp. 119-123; Mohammed, A., Ågren, H., Norman, P., Time-Dependent Density Functional Theory for Resonant Properties: Resonance Enhanced Raman Scattering from the Complex Electric-Dipole Polarizability (2009) Phys. Chem. Chem. Phys., 11, pp. 4539-4548; Aidas, K., Angeli, C., Bak, K.L., Bakken, V., Bast, R., Boman, L., Christiansen, O., Dahle, P., The Dalton Quantum Chemistry Program System (2014) WIREs Comput. Mol. Sci., 4, pp. 269-284; Saidi, W.A., Norman, P., Probing Single-Walled Carbon Nanotube Defect Chemistry Using Resonance Raman Spectroscopy (2014) Carbon, 67, pp. 17-26; Al-Saidi, W.A., Asher, S.A., Norman, P., Resonance Raman Spectra of TNT and RDX Using Vibronic Theory, Excited-State Gradient, and Complex Polarizability Approximations (2012) J. Phys. Chem. A, 116, pp. 7862-7872; Hay, P.J., Wadt, R.W., Ab initio Effective Core Potentials for Molecular Calculations. Potentials for K to Au Including the Outermost Core Orbitals (1985) J. Chem. Phys., 82, p. 299; Kendall, R.A., Dunning, T.H., Jr., Harrison, R.J., Electron Affinities of the First-Row Atoms Revisited. Systematic Basis Sets and Wave Functions (1992) J. Chem. Phys., 96, p. 6796; Woon, D.E., Dunning, T.H., Jr., Gaussian Basis Sets for Use in Correlated Molecular Calculations. III. the Atoms Aluminum Through Argon (1993) J. Chem. Phys., 98, p. 1358; Martin, R.L., Natural Transition Orbitals (2003) J. Chem. Phys., 118, pp. 4775-4777; Neugebauer, J., Reiher, M., Kind, C., Hess, B.A., Quantum Chemical Calculations of Vibrational Spectra of Large Molecules - Raman and IR Spectra for Buckminsterfullerene (2002) J. Comput. Chem., 23, p. 895; Dreuw, A., Weisman, J.L., Head-Gordon, M., Long-Range Charge-Transfer Excited States in Time-Dependent Density Functional Theory Require Non-Local Exchange (2003) J. Chem. Phys., 119, pp. 2943-2946; Harb, M., Rabilloud, F., Simon, D., Rydlo, A., Lecoultre, S., Conus, F., Rodrigues, V., Felix, C., Optical Absorption of Small Silver Clusters: Agn, (n = 4-22) (2008) J. Chem. Phys., 129, p. 194108; Creighton, J.A., Surface Raman Electromagnetic Enhancement Factors for Molecules at the Surface of Small Isolated Metal Spheres: The Determination of Adsorbate Orientation from SERS Relative Intensities (1983) Surf. Sci., 124, pp. 209-219; Vivoni, A., Birke, R.L., Foucault, R., Lombardi, J.R., Ab Initio Frequency Calculations of Pyridine Adsorbed on an Adatom Model of a SERS Active Site of a Silver Surface (2003) J. Phys. Chem. B, 107, pp. 5547-5557; Mazzarello, R., Cossaro, A., Verdini, A., Rousseau, R., Casalis, L., Danisman, M.F., Floreano, L., Scoles, G., Structure of a CH3S Monolayer on Au(111) Solved by the Interplay between Molecular Dynamics Calculations and Diffraction Measurements (2007) Phys. Rev. Lett., 98, p. 016102. QC 20170109

Available from: 2016-12-22 Created: 2016-12-21 Last updated: 2017-01-09Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Norman, P.
In the same journal
The Journal of Physical Chemistry C
Theoretical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 275 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf