Change search
ReferencesLink to record
Permanent link

Direct link
Automatic Localization of Bugs to Faulty Components in Large Scale Software Systems using Bayesian Classification
Ericsson AB.
KTH, School of Information and Communication Technology (ICT), Software and Computer systems, SCS. UC Berkeley. (Model-based Computing Systems (MCS))ORCID iD: 0000-0001-8457-4105
Linköping University.
Linköping University.
Show others and affiliations
2016 (English)In: In Proceedings of IEEE International Conference on Software Quality, Reliability & Security (QRS), IEEE conference proceedings, 2016Conference paper (Refereed)
Abstract [en]

We suggest a Bayesian approach to the problem of reducing bug turn- around time in large software development organizations. Our approach is to use classification to predict where bugs are located in components. This classification is a form of automatic fault localization (AFL) at the component level. The approach only relies on historical bug reports and does not require detailed analysis of source code or detailed test runs. Our approach addresses two problems identified in user studies of AFL tools. The first problem concerns the trust in which the user can put in the results of the tool. The second problem concerns understanding how the results were computed. The proposed model quantifies the uncertainty in its predictions and all estimated model parameters. Additionally, the output of the model explains why a result was suggested. We evaluate the approach on more than 50000 bugs.

Place, publisher, year, edition, pages
IEEE conference proceedings, 2016.
National Category
Computer Science
Identifiers
URN: urn:nbn:se:kth:diva-199043OAI: oai:DiVA.org:kth-199043DiVA: diva2:1059702
Conference
QRS
Available from: 2016-12-22 Created: 2016-12-22 Last updated: 2017-01-18

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Broman, David
By organisation
Software and Computer systems, SCS
Computer Science

Search outside of DiVA

GoogleGoogle Scholar

Total: 11 hits
ReferencesLink to record
Permanent link

Direct link