Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Investigation into Biological Environments through (Non)linear Optics: A Multiscale Study of Laurdan Derivatives
KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.ORCID iD: 0000-0001-8541-1914
KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.ORCID iD: 0000-0003-0185-5724
KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.ORCID iD: 0000-0002-4527-2566
2016 (English)In: Journal of Chemical Theory and Computation, ISSN 1549-9618, E-ISSN 1549-9626, Vol. 12, no 12, p. 6169-6181Article in journal (Refereed) Published
Abstract [en]

The fluorescent marker Laurdan and its new derivative, C-Laurdan, have been investigated by means of theoretical calculations in a DOPC lipid bilayer membrane at room temperature, and a comparison is made with results from fluorescence experiments. Experimentally, the latter probe is known to have a higher sensitivity to the membrane polarity at the lipid headgroup region and has higher water solubility. Results from Molecular Dynamics (MD) simulations show that C-Laurdan is oriented with the carboxyl group toward the head of the membrane, with an angle of 50 degrees between the molecular backbone and the normal to the bilayer, in contrast to the orientation of the Laurdan headgroup whose carbonyl group is oriented toward the polar regions of the membrane and which describes an angle of ca. 70-80 degrees with the membrane normal. This contrast in orientation reflects the differences in transition dipole moment between the two probes and, in turn, the optical properties. QM/MM results of the probes show little differences for one- (OPA) and two-photon absorption (TPA) spectra, while the second harmonic generation (SHG) beta component is twice as large in Laurdan with respect to C-Laurdan probe. The fluorescence anisotropy decay analysis of the first excited state confirms that Laurdan has more rotational freedom in the DOPC membrane, while C-Laurdan experiences a higher hindrance, making it a better probe for lipid membrane phase recognition.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2016. Vol. 12, no 12, p. 6169-6181
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-199503DOI: 10.1021/acs.jctc.6b00906ISI: 000389866500041Scopus ID: 2-s2.0-85006010884OAI: oai:DiVA.org:kth-199503DiVA, id: diva2:1066236
Note

QC 20170117

Available from: 2017-01-17 Created: 2017-01-09 Last updated: 2017-11-29Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Osella, SilvioJena, Naresh K.Knippenberg, Stefan

Search in DiVA

By author/editor
Osella, SilvioMurugan, N. ArulJena, Naresh K.Knippenberg, Stefan
By organisation
Theoretical Chemistry and Biology
In the same journal
Journal of Chemical Theory and Computation
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 24 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf