Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Glass forming range of the Ti-Fe-Si amorphous alloys: An effective materials-design approach coupling CALPHAD and topological instability criterion
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.ORCID iD: 0000-0002-8493-9802
2016 (English)In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 120, no 20, article id 205106Article in journal (Refereed) Published
Abstract [en]

A method of composition design for metallic glasses was proposed by using the Calculation of Phase Diagrams (CALPHAD) with the assistance of the topological instability criterion. This methodology was demonstrated in the quick and effective searching of glass-forming regions for Ti-Fe-Si and Ti-Zr-Fe-Si alloys containing no biologically toxic elements, e.g., Ni and Cu. In addition, the Ti-Fe-Si system may promote the glass formation owing to the existence of a deep eutectic at the Ti-rich corner. A self-consistent thermodynamic database was constructed based on the CALPHAD approach. The liquidus projection, isothermal sections, and the enthalpy of mixing were calculated by using the database. On the basis of these calculations coupling with the topological instability "lambda lambda criterion," the potential glass-forming alloy compositions in a narrow region were suggested for experimental validation. Thereafter, the isothermal sections of the Ti-Zr-Fe-Si quaternary system were calculated at certain contents of Zr. The designed alloys were prepared by arc-melting and followed by melt-spinning to the ribbon shape. The experimental verifications matched reasonably well with the theoretical calculations. This work offers new insights for predicting glass-forming alloys based on thermodynamic arguments; it shall be of benefit for the exploration of new metallic glasses.

Place, publisher, year, edition, pages
AIP Publishing , 2016. Vol. 120, no 20, article id 205106
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-199758DOI: 10.1063/1.4968585ISI: 000390231700022Scopus ID: 2-s2.0-85000893966OAI: oai:DiVA.org:kth-199758DiVA, id: diva2:1067363
Note

QC 20170120

Available from: 2017-01-20 Created: 2017-01-16 Last updated: 2017-11-29Bibliographically approved
In thesis
1. High-performance Load-bearing Alloys
Open this publication in new window or tab >>High-performance Load-bearing Alloys
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The aim of this thesis is to study advanced metallic alloys as load-bearing componentsfor engineering and biomedical applications. The investigations have been focusing onthe improvement of the properties and performance of existing materials as well assynthesizing and developing completely new materials. This thesis covers alloy design,microstructure characterizations, mechanical and electrochemical tests, together withevaluating the tribocorrosion performances under the combined action of wear andcorrosion. The thesis consists of three parts:In part one (paper I and II), two types of multicomponent Ti-Fe-Sn-Nb alloys weredeveloped showing superior mechanical properties with distinct microstructures. Firstlythe hypoeutectic alloy consisting of ductile dendrites and ultrafine eutectic presentedsuperior yield strength and enhanced ductility compared to those of bulk metallicglasses (BMGs). Secondly, the β-type alloys completely retaining of β-Ti phasedisplayed outstanding plasticity without sacrificing the high mechanical strength.In part two (paper III), a series of Ti-based glassy alloys containing no biological toxicelements e.g. Ni, Cu and Al, were designed by a novel method coupling thermodynamiccalculations and topological instability criterion. A self-consistent thermodynamicdatabase was constructed based on the CALPHAD (Calculation of Phase Diagrams)approach. The experimental verifications matched reasonably well with the theoreticalcalculation, suggesting this method provides an effective approach for glass formingpredictions.In part three (paper IV and V), the degradation mechanisms of the load-bearing Zrbased BMGs were evaluated under the effects of tribological wear and electrochemicalcorrosion. Comparatively the tribo-electrochemical performances of the surfacemodified (plasma nitriding or diamond-like carbon) conventional metallic biomaterialsi.e. medical grade pure Ti, stainless steel and CoCrMo alloys, were investigated in linewith that of the BMGs.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2017. p. 44
National Category
Materials Engineering
Research subject
Materials Science and Engineering
Identifiers
urn:nbn:se:kth:diva-208641 (URN)9789177294283 (ISBN)
Public defence
2017-06-08, Kollegiesalen, Brinellvägen 8, KTH, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20170612

Available from: 2017-06-12 Created: 2017-06-09 Last updated: 2017-06-12Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Zhao, Guo-HuaMao, Huahai
By organisation
Materials Science and Engineering
In the same journal
Journal of Applied Physics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 58 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf