Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Biodistribution of biodegradable polymeric nano-carriers loaded with busulphan and designed for multimodal imaging
KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM. Karolinska Institutet (KI), Sweden.ORCID iD: 0000-0001-8887-9141
Show others and affiliations
2016 (English)In: Journal of Nanobiotechnology, ISSN 1477-3155, Vol. 14, no 1, article id 82Article in journal (Refereed) Published
Abstract [en]

Background: Multifunctional nanocarriers for controlled drug delivery, imaging of disease development and follow-up of treatment efficacy are promising novel tools for disease diagnosis and treatment. In the current investigation, we present a multifunctional theranostic nanocarrier system for anticancer drug delivery and molecular imaging. Superparamagnetic iron oxide nanoparticles (SPIONs) as an MRI contrast agent and busulphan as a model for lipophilic antineoplastic drugs were encapsulated into poly (ethylene glycol)-co-poly (caprolactone) (PEG-PCL) micelles via the emulsion-evaporation method, and PEG-PCL was labelled with VivoTag 680XL fluorochrome for in vivo fluorescence imaging. Results: Busulphan entrapment efficiency was 83% while the drug release showed a sustained pattern over 10 h. SPION loaded-PEG-PCL micelles showed contrast enhancement in T-2*-weighted MRI with high r(2)* relaxivity. In vitro cellular uptake of PEG-PCL micelles labeled with fluorescein in J774A cells was found to be time-dependent. The maximum uptake was observed after 24 h of incubation. The biodistribution of PEG-PCL micelles functionalized with VivoTag 680XL was investigated in Balb/c mice over 48 h using in vivo fluorescence imaging. The results of real-time live imaging were then confirmed by ex vivo organ imaging and histological examination. Generally, PEG-PCL micelles were highly distributed into the lungs during the first 4 h post intravenous administration, then redistributed and accumulated in liver and spleen until 48 h post administration. No pathological impairment was found in the major organs studied. Conclusions: Thus, with loaded contrast agent and conjugated fluorochrome, PEG-PCL micelles as biodegradable and biocompatible nanocarriers are efficient multimodal imaging agents, offering high drug loading capacity, and sustained drug release. These might offer high treatment efficacy and real-time tracking of the drug delivery system in vivo, which is crucial for designing of an efficient drug delivery system.

Place, publisher, year, edition, pages
BioMed Central, 2016. Vol. 14, no 1, article id 82
Keywords [en]
Biodegradable polymer, Drug delivery, Magnetic resonance imaging, In vivo fluorescence imaging, Biodistribution, Busulphan, Cancer
National Category
Microbiology
Identifiers
URN: urn:nbn:se:kth:diva-200409DOI: 10.1186/s12951-016-0239-0ISI: 000391072700002Scopus ID: 2-s2.0-85006482286OAI: oai:DiVA.org:kth-200409DiVA, id: diva2:1069046
Funder
Swedish Cancer Society, CAN2014/759
Note

QC 20170127

Available from: 2017-01-27 Created: 2017-01-27 Last updated: 2020-02-04Bibliographically approved
In thesis
1. Design of Functional Polymeric Nanoparticles for Biomedical Applications
Open this publication in new window or tab >>Design of Functional Polymeric Nanoparticles for Biomedical Applications
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Most of the devastating diseases such as cancer are relatively incurable and have high risks of relapse. Therefore, persistent endeavors have been devoted to improve patient survival rate and quality of life. Drug delivery systems (DDS) based on polymeric nanoparticles (PNPs) have been demonstrated to increase the therapeutic index (efficacy/toxicity ratio) of chemotherapeutic agents. This thesis focuses on designing non-toxic and multifunctional biodegradable PNPs from preformed polymers for bioimaging and drug delivery applications. Multifunctional poly(lactide-co-glycolide) (PLGA) NPs were simultaneously loaded with imaging probes, superparamagnetic iron oxide nanoparticles (SPION) and manganese-doped zinc sulfide (Mn:ZnS) quantum dots (QDs), as well as an anti-cancer drug, busulfan (Bu), during the particle formation. The NPs were utilized to enhance magnetic resonance imaging (MRI) in vivo and controlled drug release in vitro (Paper I). Poly(ε-caprolactone) (PCL) was copolymerized with poly(ethylene glycol) (PEG) to achieve stealth property for in vivo purposes. Aluminum phthalocyanine, a photosensitizer and an anti-cancer drug, was encapsulated in the PEG-b-PCL NPs for photodynamic therapy during particle formation. The biodistribution of the prepared nanophotosensitizer showed targeted drug delivery toward lungs, liver and spleen as monitored by the intrinsic fluorescence of the photosensitizer (Paper II). The PEG-b-PCL NPs were loaded with SPION or surface functionalized with VivoTag 680XL fluorochrome and utilized for in vivo multimodal imaging, MRI and fluorescence imaging (Paper III). This thesis also presents stable and engineered PNPs obtained using reversible addition-fragmentation chain transfer (RAFT) mediated polymerization-induced self-assembly (PISA). Hydrophobic agents, nile red (NR) dye or doxorubicin (DOX) drug, were encapsulated in poly(N-[3- (dimethylamino) propyl] methacrylamide)-b-poly(methyl methacrylate) (PDMAPMA-b-PMMA) NPs via one-pot RAFT-mediated PISA in water (Paper IV). The PDMAPMA-b-PMMA NPs showed very monodisperse spheres and core-shell nanostructures. Stable and non-toxic poly(acrylic acid)-b-poly(butyl acrylate) (PAA-b-PBA) NPs, synthesized via RAFTmediated PISA in water, were surface engineered by allyl-functional groups prior to bio-conjugation for targeted drug delivery (Paper V). The engineered NPs retained their colloidal stability and size post-allyl functionalization. DOX was efficiently (90 %) encapsulated in the PAA-bPBA NPs during NPs formation. A controlled release pattern of DOX from PAA-b-PBA NPs was observed over 7 days.

Abstract [sv]

Aggressiva sjukdomar, såsom cancer, har ofta stor risk för återfall och är i många fall obotliga. Det gör att det finns en stark strävan efter att förbättra patienters livskvalitet och överlevnad. Nanopartikel-baserade system för att frisätta läkemedelbaserade på polymerer (PNPs) har visats vara lovande för att öka det terapeutiska indexet (effektivitet/toxicitet) för kemoterapeutiska medel. Denna avhandling fokuserar på att framställa icke-toxiska och multifunktionella biologiskt nedbrytbara PNPs för avbildning och läkemedelsadministrationsapplikationer från polymerer. Parallellt med partikelbildningen laddades multifunktionella poly(laktid-sam-glykolid) (PLGA) NPs med superparamagnetiska nanopartiklar av järnoxid (SPION) och kvantprickar (QDs) av mangandopad zinksulfid (Mn:ZnS), såväl som med ett anti-cancerläkemedel, busulfan (Bu). Dessa NPs användes sedan för att förbättra kontrasten i MRI in vivo och för kontrollerad läkemedelsfrisättning in vitro (Paper I). Polykaprolakton (PCL) sampolymeriserades med polyetylenglykol (PEG) för att uppnå partiklar med stealth-egenskaper. För fotodynamisk terapi inkapslades en fotosensibilisator av aluminiumftalocyanin som också är ett anticancerläkemedel i PEG-b-PCL NPs samtidigt som partiklarna bildades. Analys av dessas biodistribution med fluorescensmätningar visade en målsökande förmåga mot lunga, lever och mjälte, (Paper II). PEG-b-PCL NPs laddades också med SPION och ytfunktionaliserades med VivoTag 680XL fluorokrom och utvärderades med in vivo multimodal avbildning, MRI och fluorescensavbildning (Paper III). Denna avhandling presenterar också stabila och skräddarsydda PNPs syntetiserade med hjälp av reversibel addition-fragmenteringkedjeöverföring (RAFT) medierad polymerisation med inducerad självorganisation (PISA). Hydrofoba substanser, nile red (NR) färgämne eller doxorubicin (DOX) läkemedel, inkapslades i poly(N-[3- (dimetylamino)propyl] metakrylamid)-b-poly(metylmetakrylat) (PDMAPMA-b-PMMA) NPs via one-pot RAFT-medierad PISA (Paper IV). PDMAPMA-b-PMMA NPs påvisade mycket monodispersa sfärer och nanostrukturer med kärna-skal. Stabila och icke-toxiska NPs av poly(akrylsyra)-b-poly(butylakrylat) (PAA-b-PBA) ytmodifierades med allyl-grupper före biokonjugering för målsökande läkemedelsleverans (Paper V). De modifierade NPs behöll deras kolloidala stabilitet och storlek efter allyl-funktionalisering. DOX inkapslades effektivt (90 %) i PAA-bPBA NPs under partikelbildningen. Kontrollera frisättning av DOX från PAA-b-PBA NPs observerades under 7 dagar.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2020. p. 65
Series
TRITA-CBH-FOU ; 2020:7
Keywords
Biodegradable polymers, SPION, PISA, RAFT, nanoparticles, drug delivery, cytotoxicity, MRI, in vivo fluorescence imaging
National Category
Polymer Chemistry Nano Technology Pharmaceutical Chemistry
Research subject
Fibre and Polymer Science
Identifiers
urn:nbn:se:kth:diva-263780 (URN)978-91-7873-429-0 (ISBN)
Public defence
2020-03-06, sal F3, Lindstedtsvägen 26, KTH, 10:00 (English)
Opponent
Supervisors
Note

QC 2020-02-07

Available from: 2020-02-07 Created: 2020-02-04 Last updated: 2020-02-07Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Asem, HebaMuhammed, Mamoun
By organisation
Functional Materials, FNM
Microbiology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 484 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf