Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Theoretic Study on Dispersion Mechanism of Boron Nitride Nanotubes by Polynucleotides
KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
2016 (English)In: SCIENTIFIC REPORTS, ISSN 2045-2322, Vol. 6, article id 39747Article in journal (Refereed) Published
Abstract [en]

Due to the unique electrical and mechanical properties of boron nitride nanotubes (BNNT), BNNT has been a promising material for many potential applications, especially in biomedical field. Understanding the dispersion of BNNT in aqueous solution by biomolecules is essential for its use in biomedical applications. In this study, BNNT wrapped by polynucleotides in aqueous solution was investigated by molecular dynamics (MD) simulations. Our results demonstrated that the BNNT wrapped by polynucleotides could greatly hinder the aggregation of BNNTs and improve the dispersion of BNNTs in aqueous solution. Dispersion of BNNTs with the assistance of polynucleotides is greatly affected by the wrapping manner of polynucleotides on BNNT, which mainly depends on two factors: the type of polynucleotides and the radius of BNNT. The interaction between polynucleotides and BNNT(9, 9) is larger than that between polynucleotides and BNNT(5, 5), which leads to the fact that dispersion of BNNT(9, 9) is better than that of BNNT(5, 5) with the assistance of polynucleotides in aqueous solution. Our study revealed the molecular-level dispersion mechanism of BNNT with the assistance of polynucleotides in aqueous solution. It shades a light on the understanding of dispersion of single wall nanotubes by biomolecules.

Place, publisher, year, edition, pages
Nature Publishing Group, 2016. Vol. 6, article id 39747
National Category
Physical Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-200210DOI: 10.1038/srep39747ISI: 000390866400001Scopus ID: 2-s2.0-85006992037OAI: oai:DiVA.org:kth-200210DiVA, id: diva2:1070841
Note

QC 20170202

Available from: 2017-02-02 Created: 2017-01-23 Last updated: 2017-02-02Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Hu, Wei

Search in DiVA

By author/editor
Hu, Wei
By organisation
Theoretical Chemistry and Biology
Physical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 37 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf