Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Bacterial adhesion to polyvinylamine-modified nanocellulose films
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.ORCID iD: 0000-0001-6263-8403
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.ORCID iD: 0000-0002-7410-0333
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.ORCID iD: 0000-0003-1812-7336
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
Show others and affiliations
2017 (English)In: Colloids and Surfaces B: Biointerfaces, ISSN 0927-7765, E-ISSN 1873-4367, Vol. 151, p. 224-231Article in journal (Refereed) Published
Abstract [en]

Cellulose nanofibril (CNF) materials have been widely studied in recent years and are suggested for a wide range of applications, e.g., medical and hygiene products. One property not very well studied is the interaction between bacteria and these materials and how this can be controlled. The current work studies how bacteria adhere to different CNF materials modified with polyelectrolyte multilayers. The tested materials were TEMPO-oxidized to have different surface charges, periodate-oxidized to vary the water interaction and hot-pressed to alter the surface structure. Then, multilayers were constructed using polyvinylamine (PVAm) and polyacrylic acid. Both the material surface charge and water interaction affect the amount of polymer adsorbed to the surfaces. Increasing the surface charge decreases the adsorption after the first PVAm layer, possibly due to conformational changes. Periodate-oxidized and crosslinked films have low initial polymer adsorptions; the decreased swelling prevents polymer diffusion into the CNF micropore structure. Microscopic analysis after incubating the samples with bacterial suspensions show that only the materials with the lowest surface charge enable bacteria to adhere to the surface because, when adsorbing up to 5 layers PVAm/PAA, the increased anionic surface charge appears to decrease the net surface charge. Both the amounts of PVAm and PAA influence the net surface charge and thus the bacterial adhesion. The structure generated by the hot-pressing of the films also strongly increases the number of bacteria adhering to the surfaces. These results indicate that the bacterial adhesion to CNF materials can be tailored using polyelectrolyte multilayers on different CNF substrates.

Place, publisher, year, edition, pages
Elsevier, 2017. Vol. 151, p. 224-231
Keywords [en]
Bacterial adhesion, Cellulose nanofibrils, Polyelectrolyte multilayers, Polymer adsorption, Polyvinylamine
National Category
Paper, Pulp and Fiber Technology
Identifiers
URN: urn:nbn:se:kth:diva-200877DOI: 10.1016/j.colsurfb.2016.12.018ISI: 000394475400027Scopus ID: 2-s2.0-85006856296OAI: oai:DiVA.org:kth-200877DiVA, id: diva2:1071204
Note

QC 20170203

Available from: 2017-02-03 Created: 2017-02-03 Last updated: 2019-06-02Bibliographically approved
In thesis
1. Bio-based preparation of nanocellulose and functionalization using polyelectrolytes
Open this publication in new window or tab >>Bio-based preparation of nanocellulose and functionalization using polyelectrolytes
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [sv]

Nanocellulosa, som kan utvinnas från skogsråvara, har de senaste åren fått mycket uppmärksamhet för sina intressanta egenskaper och breda användningsområde. Studierna i denna avhandling syftar till att vidga möjligheterna att använda nanocellulosa i olika applikationer. Detta har skett genom att utveckla en ny metod för att tillverka nanocellulosa och genom att studera möjligheten att adsorbera polyelektrolyter på material av nanocellulosa för att ändra hur bakterier interagerar med dessa.

Nanocellulosan tillverkades genom att förbehandla pappersmassa med smält oxalsyra dihydrat. Reaktionsblandningen tvättades med etanol, aceton eller tetrahydrofuran innan den torkades och fibrillerades. Den resulterande nanocellulosan erhölls med högt utbyte, hade hög ytladdning (upp till 1,4 mmol g-1) och innehöll partiklar som både liknande nanofibriller och nanokristaller. Materialet visades kunna användas både för att tillverka Pickering emulsioner och tunna filmer med en styrka upp till 197 MPa, töjning upp till 5 %, E-modul upp till 10,6 GPa och syrepermeabilitet ner till 0.31 cm3 µm m‑2 dag‑kPa‑1.

Genom att adsorbera polyvinylamin och polyakrylsyra på material av nanocellulosa visades det vara möjligt att påverka mängden bakterier som fäster till materialet. Substraten bestod både av kompakta filmer och porösa aerogeler. Genom att variera ytladdningen på materialen, ytans struktur och antalet adsorberade lager av polymererna var det möjligt att tillverka material med både hög och låg bakterieadhesion. Detta gör det möjligt att anpassa material för användning antingen som kontaktaktivt- eller icke-adhesivt antibakteriellt material. Båda dessa kan vara miljövänliga alternativ till dagens antibakteriella material.

Nanocellulosa är ett material som inom snar framtid sannolikt kommer användas inom en mängd olika applikationer. För att öka mängden applikationer där nanocellulosa tillför ett stort värde är det nödvändigt att utveckla alternativa tillverkningsmetoder till dagens välkända, exempelvis, genom att använda den beskrivna oxaleringen som förbehandling. Förmågan att styra bakterieadhesionen på material av nanocellulosa ger därtill möjlighet att hitta nya användningsområden inom t.ex. hälso- och sjukvårdsbranschen.

Abstract [en]

Nanocellulose is a material which can be extracted from wood, and in recent years it has received great attention for its interesting properties and wide range of possible applications. With the aim of further expanding the applications of nanocellulose, this work has studied a new way to produce nanocellulose as well as the possibility of using polyelectrolyte adsorption to alter the interaction with bacteria of materials made from nanocellulose.

Nanocellulose was produced by a novel concurrent esterification and hydrolysis of wood pulp in molten oxalic acid dihydrate. The resulting mixture was washed using ethanol, acetone or tetrahydrofuran before the cellulose oxalate was dried and fibrillated. The nanocellulose obtained with a high yield had a high surface charge (up to 1.4 mmol g-1) and contained particles with a morphology similar to both cellulose nanocrystals and cellulose nanofibrils. The material was used to prepare both Pickering emulsions and thin films with a strength of up to 197 MPa, a strain at break of up to 5 %, a modulus of up to 10.6 GPa and an oxygen permeability as low as 0.31 cm3 µm m-2 day-1 kPa-1.

Polyelectrolyte adsorption of polyvinylamine and polyacrylic acid was used to modify materials made from nanocellulose. Materials in the form of films and aerogels were used as substrates. By altering the surface charge of the material, the surface structure and the number of layers of polyvinylamine/polyacrylic acid adsorbed, it was possible to prepare materials with both high and low bacterial adhesion. By changing the material properties it is possible to tailor materials with either contact-active or non-adhesive antibacterial properties, both of which are sustainable alternatives to the currently used antibacterial materials.

Nanocellulose is a material which in the near future will probably be used in many applications. In order to improve the suitability of nanocellulose in certain applications it will be necessary to use production methods which differ from the existing methods, for example by using oxalation as a pre-treatment. By modifying the bacterial adhesion to materials prepared from nanocellulose, new medical and health applications emerge.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2019. p. 67
Series
TRITA-CBH-FOU ; 2019:36
Keywords
cellulose nanofibrils, cellulose nanocrystals, oxalic acid, polyvinylamine, layer by layer, cellulose oxalate, antibacterial, Cellulosa nanofibriller, cellulosa nanokristaller, oxalsyra, polyvinylamin, lager på lager, cellulosa oxalat, antibakteriell
National Category
Paper, Pulp and Fiber Technology
Research subject
Fibre and Polymer Science
Identifiers
urn:nbn:se:kth:diva-252580 (URN)978-91-7873-245-6 (ISBN)
Public defence
2019-08-30, F3, Lindstedtsvägen 26, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 2019-06-05

Available from: 2019-06-05 Created: 2019-06-02 Last updated: 2019-06-05Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Henschen, JonatanLarsson, Per A.Illergård, JosefinEk, MonicaWågberg, Lars
By organisation
Fibre and Polymer Technology
In the same journal
Colloids and Surfaces B: Biointerfaces
Paper, Pulp and Fiber Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 2377 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf