Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Oxidation of accident tolerant fuel candidates
KTH, School of Engineering Sciences (SCI), Physics, Reactor Physics.ORCID iD: 0000-0001-7228-9729
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.ORCID iD: 0000-0003-2170-0076
KTH, School of Engineering Sciences (SCI), Physics, Reactor Physics.ORCID iD: 0000-0002-6082-8913
KTH, School of Engineering Sciences (SCI), Physics, Reactor Physics.
2017 (English)In: Journal of Nuclear Science and Technology, ISSN 0022-3131, E-ISSN 1881-1248, Vol. 54, no 3, p. 280-286Article in journal (Refereed) Published
Abstract [en]

In this study, the oxidation of various accident tolerant fuel candidates produced under different conditions have been evaluated and compared relative to the reference standard–UO2. The candidates considered in this study were UN, U3Si2, U3Si5, and a composite material composed of UN–U3Si2. With the spark plasma sintering (SPS) method, it was possible to fabricate samples of UN with varying porosity, as well as a high-density composite of UN–U3Si2 (10%). Using thermogravimetry in air, the oxidation behaviors of each material and the various microstructures of UN were assessed. These results reveal that it is possible to fabricate UN to very high densities using the SPS method, such that its resistance to oxidation can be improved compared to U3Si5 and UO2, and compete favorably with the principal ATF candidates, U3Si2, which shows a particularly violent reaction under the conditions of this study, and the UN–U3Si2 (10%) composite.

Place, publisher, year, edition, pages
Taylor & Francis, 2017. Vol. 54, no 3, p. 280-286
Keywords [en]
accident tolerant fuel, Nuclear fuel, oxidation, SPS sintering, uranium nitride, uranium nitride silicide composite, uranium silicide
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-201127DOI: 10.1080/00223131.2016.1262297ISI: 000394716500002Scopus ID: 2-s2.0-85001948816OAI: oai:DiVA.org:kth-201127DiVA, id: diva2:1072620
Note

QC 20170208

Available from: 2017-02-08 Created: 2017-02-08 Last updated: 2017-11-29Bibliographically approved
In thesis
1. High Performance Fuels for Water-Cooled Reactor Systems
Open this publication in new window or tab >>High Performance Fuels for Water-Cooled Reactor Systems
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Investigation of nitride fuels and their properties has, for decades, been propelled on the basis of their desirable high metal densities and high thermal conductivities, both of which oer intrinsic advantages to performance, economy, and safety in fast and light water reactor systems. In this time several key obstacles have been identied as impeding the implementation of these fuels for commercial applications; namely chemical interactions with air and steam, the noted diculty in sintering of the material, and the high costs associated with the enrichment of 15N. The combination of these limitations, historically, led to the well founded conclusion that the most appropriate use of nitride fuels was in the fast reactor fuel cycle, where the cost burdens associated with them is substantially less. Indeed, it is within this context that the vast majority of work on nitrides has been and continues to be done.

Nevertheless, following the 2011 Fukushima-Daiichi nuclear accident, a concerted governmental-industrial eort was embarked upon to explore the alternatives of so-called \accident tolerant" and \high performance" fuels. These fuels would, at the same time, improve the response of the fuel-clad system to severe accidents and improve the economy of operation for light water reactor systems. Among the various candidates proposed are uranium nitride, uranium silicide, and a third \uranium nitride-silicide" composite featuring a mixture of the former.

In this thesis a method has been established for the synthesis, fabrication, and characterization of high purity uranium nitride, and uranium nitride-silicide composites, prepared by the spark plasma sintering (SPS) technique. A specic result has been to isolate the impact of the processing parameters on the microstructure of representative fuel pellets, essentially permitting any conceivable microstructure of interest to be fabricated. This has enabled the development of a highly reproducible technique for the production of pellets with microstructures tailored towards any desired porosity between 88-99.9%TD, any grain size between 6-24 μm, and, in the case of  the uranium nitride-silicide composite, a silicide-coated UN matrix. This has permitted the evaluation of these microstructural characteristics on the performance of these materials, specically with respect to their role as accident tolerant fuels. This has generated results which have tightly coupled nitride performance with pellet microstructure, with important implications for the use of nitrides in water-cooled reactors.

Abstract [sv]

Under artionden har forskning om nitridbranseln och dess egenskaper

bedrivits pa grundval av nitridbransletsatravarda egenskaper avseende dess

hoga metall tathet och hog varmeledningsformaga. Dessa egenskaper besitter

vasentliga fordelar avseende prestanda, ekonomi och sakerhet for metallkylda

som lattvatten reaktorer. Genom forskning har aven centrala begr

ansningar identierats for implementering av nitridbranslen for kommersiellt

bruk. Begransningar avser den kemiska interaktionen med luft och

vattenanga, en uppmarksammad svarighet att sintring av materialet samt

hoga kostnader forknippade med den nodvandiga anrikningen av 15-N. Kombinationen

av dessa begransningar resulterade, tidigare, i en valgrundad

slutsats att nitridbranslet mest andamalsenliga anvandningsomrade var i

karnbranslecykeln for snabba reaktorer. Detta da kostnaderna forenade med

implementeringen av branslet ar avsevart lagre. Inom detta sammanhang

har majoriteten av forskning avseende nitrider bedrivits och fortskrider an

idag.

Dock, efter karnkraftsolyckan i Fukushima-Daiichi 2011, inleddes en

samlad industriell och statlig anstrangning for att undersoka alternativ till

sa kallade \olyckstoleranta" och \hogpresterande" branslen. Dessa branslen

skulle samtidigt forbattra reaktionstiden for bransleinkapsling systemet mot

allvarliga olyckor samt forbattra driftsekonomin av lattvattenreaktorer. Foreslagna

kandidater ar urannitrid, uransilicid och en tredje \uran nitrid-silicid",

komposit bestaende av en blandning av de foregaende.

Genom denna avhandling har en metod faststallts for syntes, tillverkning

och karaktarisering av uran nitrid av hog renhet samt uran nitrid-silicid

kompositer, forberedda med tekniken SPS (Spark Plasma Sintering). Ett

specikt resultat har varit att isolera eekten av processparametrar pa

mikrostrukturen pa representativa branslekutsar. Detta mojliggor, i princip,

framstallningen av alla tankbara mikrostrukturer utav intresse for tillverkning.

Vidare har detta mojliggjort utvecklingen av en hogeligen reproducerbar 

teknik for framstallningen av branslekutsar med mikrostrukturer skraddarsydda

for onskad porositet mellan 88 och 99.9 % TD, och kornstorlek mellan

6 och 24 μm. Dartill har en metod for att belagga en matris av uran

nitrid-silicid framarbetats. Detta har mojliggjort utvarderingen av dessa

mikrostrukturella parametrars paverkan pa materialens prestanda, sarskilt

avseende dess roll som olyckstoleranta branslen. Detta har genererat resultat

som ar tatt sammanlankat nitridbranslets prestanda till kutsens mikrostruktur,

med viktiga konsekvenser for den potentiella anvandningen av nitrider

i lattvatten reaktorer.

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2016. p. 103
Series
TRITA-FYS, ISSN 0280-316X ; 2016:72
Keywords
Nuclear fuel, accident tolerant fuel, uranium nitride, uranium silicide
National Category
Energy Engineering
Research subject
Physics
Identifiers
urn:nbn:se:kth:diva-201604 (URN)978-91-7729-179-4 (ISBN)
Public defence
2016-12-16, FR4, Albanova Universitetscentrum, Stockholm, 13:15 (English)
Opponent
Supervisors
Funder
EU, FP7, Seventh Framework Programme, 295825
Note

QC 20170210

Available from: 2017-02-10 Created: 2017-02-10 Last updated: 2018-02-27Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Johnson, KyleStröm, ValterWallenius, JanneAdorno Lopes, Denise
By organisation
Reactor PhysicsMaterials Science and Engineering
In the same journal
Journal of Nuclear Science and Technology
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 214 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf