Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The effect of moment of inertia on the liquids in centrifugal microfluidics
KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
Show others and affiliations
2016 (English)In: Micromachines, ISSN 2072-666X, E-ISSN 2072-666X, Vol. 7, no 12, article id 215Article in journal (Refereed) Published
Abstract [en]

The flow of liquids in centrifugal microfluidics is unidirectional and dominated by centrifugal and Coriolis forces (i.e., effective only at T-junctions). Developing mechanisms and discovering efficient techniques to propel liquids in any direction other than the direction of the centrifugal force has been the subject of a large number of studies. The capillary force attained by specific surface treatments, pneumatic energy, active and passive flow reciprocation and Euler force have been previously introduced in order to manipulate the liquid flow and push it against the centrifugal force. Here, as a new method, the moment of inertia of the liquid inside a chamber in a centrifugal microfluidic platform is employed to manipulate the flow and propel the liquid passively towards the disc center. Furthermore, the effect of the moment of inertia on the liquid in a rectangular chamber is evaluated, both in theory and experiments, and the optimum geometry is defined. As an application of the introduced method, the moment of inertia of the liquid is used in order to mix two different dyed deionized (DI) waters; the mixing efficiency is evaluated and compared to similar mixing techniques. The results show the potential of the presented method for pumping liquids radially inward with relatively high flow rates (up to 23 mm3/s) and also efficient mixing in centrifugal microfluidic platforms.

Place, publisher, year, edition, pages
MDPI AG , 2016. Vol. 7, no 12, article id 215
Keywords [en]
Disc, Inertia, Lab-on-a-chip, Microfluidics, Mixing, Pump
National Category
Fluid Mechanics and Acoustics
Identifiers
URN: urn:nbn:se:kth:diva-201574DOI: 10.3390/mi7120215Scopus ID: 2-s2.0-85007404150OAI: oai:DiVA.org:kth-201574DiVA, id: diva2:1073433
Funder
Science for Life Laboratory - a national resource center for high-throughput molecular bioscience
Note

QC 20170210

Available from: 2017-02-10 Created: 2017-02-10 Last updated: 2017-11-29Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Kazemzadeh, Amin
By organisation
Proteomics and NanobiotechnologyScience for Life Laboratory, SciLifeLab
In the same journal
Micromachines
Fluid Mechanics and Acoustics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 12 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf