CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt146",{id:"formSmash:upper:j_idt146",widgetVar:"widget_formSmash_upper_j_idt146",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt147_j_idt149",{id:"formSmash:upper:j_idt147:j_idt149",widgetVar:"widget_formSmash_upper_j_idt147_j_idt149",target:"formSmash:upper:j_idt147:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Point counts and the cohomology of moduli spaces of curvesPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2006 (English)Doctoral thesis, comprehensive summary (Other scientific)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Stockholm: KTH , 2006.
##### Series

Trita-MAT, ISSN 1401-2286
##### National Category

Mathematics
##### Identifiers

URN: urn:nbn:se:kth:diva-4105ISBN: 91-7178-447-0 (print)OAI: oai:DiVA.org:kth-4105DiVA: diva2:10754
##### Public defence

2006-09-29, F3, Lindstedtsvägen 26, Stockholm, 14:00
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt434",{id:"formSmash:j_idt434",widgetVar:"widget_formSmash_j_idt434",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt440",{id:"formSmash:j_idt440",widgetVar:"widget_formSmash_j_idt440",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt446",{id:"formSmash:j_idt446",widgetVar:"widget_formSmash_j_idt446",multiple:true});
##### Note

QC 20100701Available from: 2006-09-18 Created: 2006-09-18 Last updated: 2010-07-01Bibliographically approved
##### List of papers

n this thesis we count the number of points defined over finite fields of certain moduli spaces of pointed curves. The aim is primarily to gain cohomological information.

Paper I is joint work with Orsola Tommasi. Here we present details of the method of finding cohomological information on moduli spaces of curves by counting points. Another method of determining the cohomology of moduli spaces of curves is also presented. It is by stratifying them into pieces that are quotients of complements of discriminants in complex vector spaces. Results obtained by these two methods allow us to compute the Hodge structure of the cohomology of $\overline{\mathcal{M}}_4$.

In Paper II we consider the moduli space $\mathcal{H}_{g,n}$ of $n$-pointed smooth hyper-elliptic curves of genus $g$. We find that there are recursion formulas in the genus that the numbers of points of $\mathcal{H}_{g,n}$ fulfill. Thus, if we can make $\mathbb{S}_n$-equivariant counts of $\mathcal{H}_{g,n}$ for low genus, then we can do this for every genus. Information about curves of genus zero and one is then found to be sufficient to compute the answers for hyperelliptic curves of all genera and with up to seven points. These results are applied to $\overline{\mathcal{M}}_{2,n}$ for $n$ up to seven, and give us the $\mathbb{S}_n$-equivariant Hodge structure of their cohomology. Moreover, we find that the $\mathbb{S}_n$-equivariant counts of $\mathcal{H}_{g,n}$ depend upon whether the characteristic is even or odd, where the first instance of this dependence is for six-pointed curves of genus three.

In Paper III we consider the moduli space $\mathcal{Q}_{n}$ of smooth $n$-pointed nonhyperelliptic curves of genus three. Using the canonical embedding of these curves as plane quartics, we make $\mathbb{S}_n$-equivariant counts of the numbers of points of $\mathcal{Q}_{n}$ for $n$ up to seven. We also count pointed plane cubics. This gives us $\mathbb{S}_n$-equivariant counts of the moduli space $\mathcal{M}_{1,n}$ for $n$ up to ten. We can then determine the $\mathbb{S}_n$-equivariant Hodge structure of the cohomology of $\overline{\mathcal{M}}_{3,n}$ for $n$ up to five.

n this thesis we count the number of points defined over finite fields of certain moduli spaces of pointed curves. The aim is primarily to gain cohomological information.

Paper I is joint work with Orsola Tommasi. Here we present details of the method of finding cohomological information on moduli spaces of curves by counting points. Another method of determining the cohomology of moduli spaces of curves is also presented. It is by stratifying them into pieces that are quotients of complements of discriminants in complex vector spaces. Results obtained by these two methods allow us to compute the Hodge structure of the cohomology of $\overline{\mathcal{M}}_4$.

In Paper II we consider the moduli space $\mathcal{H}_{g,n}$ of $n$-pointed smooth hyper-elliptic curves of genus $g$. We find that there are recursion formulas in the genus that the numbers of points of $\mathcal{H}_{g,n}$ fulfill. Thus, if we can make $\mathbb{S}_n$-equivariant counts of $\mathcal{H}_{g,n}$ for low genus, then we can do this for every genus. Information about curves of genus zero and one is then found to be sufficient to compute the answers for hyperelliptic curves of all genera and with up to seven points. These results are applied to $\overline{\mathcal{M}}_{2,n}$ for $n$ up to seven, and give us the $\mathbb{S}_n$-equivariant Hodge structure of their cohomology. Moreover, we find that the $\mathbb{S}_n$-equivariant counts of $\mathcal{H}_{g,n}$ depend upon whether the characteristic is even or odd, where the first instance of this dependence is for six-pointed curves of genus three.

In Paper III we consider the moduli space $\mathcal{Q}_{n}$ of smooth $n$-pointed nonhyperelliptic curves of genus three. Using the canonical embedding of these curves as plane quartics, we make $\mathbb{S}_n$-equivariant counts of the numbers of points of $\mathcal{Q}_{n}$ for $n$ up to seven. We also count pointed plane cubics. This gives us $\mathbb{S}_n$-equivariant counts of the moduli space $\mathcal{M}_{1,n}$ for $n$ up to ten. We can then determine the $\mathbb{S}_n$-equivariant Hodge structure of the cohomology of $\overline{\mathcal{M}}_{3,n}$ for $n$ up to five.

n this thesis we count the number of points defined over finite fields of certain moduli spaces of pointed curves. The aim is primarily to gain cohomological information.

Paper I is joint work with Orsola Tommasi. Here we present details of the method of finding cohomological information on moduli spaces of curves by counting points. Another method of determining the cohomology of moduli spaces of curves is also presented. It is by stratifying them into pieces that are quotients of complements of discriminants in complex vector spaces. Results obtained by these two methods allow us to compute the Hodge structure of the cohomology of $\overline{\mathcal{M}}_4$.

In Paper II we consider the moduli space $\mathcal{H}_{g,n}$ of $n$-pointed smooth hyper-elliptic curves of genus $g$. We find that there are recursion formulas in the genus that the numbers of points of $\mathcal{H}_{g,n}$ fulfill. Thus, if we can make $\mathbb{S}_n$-equivariant counts of $\mathcal{H}_{g,n}$ for low genus, then we can do this for every genus. Information about curves of genus zero and one is then found to be sufficient to compute the answers for hyperelliptic curves of all genera and with up to seven points. These results are applied to $\overline{\mathcal{M}}_{2,n}$ for $n$ up to seven, and give us the $\mathbb{S}_n$-equivariant Hodge structure of their cohomology. Moreover, we find that the $\mathbb{S}_n$-equivariant counts of $\mathcal{H}_{g,n}$ depend upon whether the characteristic is even or odd, where the first instance of this dependence is for six-pointed curves of genus three.

In Paper III we consider the moduli space $\mathcal{Q}_{n}$ of smooth $n$-pointed nonhyperelliptic curves of genus three. Using the canonical embedding of these curves as plane quartics, we make $\mathbb{S}_n$-equivariant counts of the numbers of points of $\mathcal{Q}_{n}$ for $n$ up to seven. We also count pointed plane cubics. This gives us $\mathbb{S}_n$-equivariant counts of the moduli space $\mathcal{M}_{1,n}$ for $n$ up to ten. We can then determine the $\mathbb{S}_n$-equivariant Hodge structure of the cohomology of $\overline{\mathcal{M}}_{3,n}$ for $n$ up to five.

1. The rational cohomology of $\overline{\mathcal{M}}_4$$(function(){PrimeFaces.cw("OverlayPanel","overlay10751",{id:"formSmash:j_idt482:0:j_idt486",widgetVar:"overlay10751",target:"formSmash:j_idt482:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. Equivariant counts of points of the moduli spaces of pointed hyperelliptic curves$(function(){PrimeFaces.cw("OverlayPanel","overlay10752",{id:"formSmash:j_idt482:1:j_idt486",widgetVar:"overlay10752",target:"formSmash:j_idt482:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

3. Cohomology of moduli spaces of curves of genus three via point counts$(function(){PrimeFaces.cw("OverlayPanel","overlay10753",{id:"formSmash:j_idt482:2:j_idt486",widgetVar:"overlay10753",target:"formSmash:j_idt482:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1144",{id:"formSmash:j_idt1144",widgetVar:"widget_formSmash_j_idt1144",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1197",{id:"formSmash:lower:j_idt1197",widgetVar:"widget_formSmash_lower_j_idt1197",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1198_j_idt1200",{id:"formSmash:lower:j_idt1198:j_idt1200",widgetVar:"widget_formSmash_lower_j_idt1198_j_idt1200",target:"formSmash:lower:j_idt1198:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});