Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
FEniCS-HPC: Coupled Multiphysics in Computational Fluid Dynamics
KTH, School of Computer Science and Communication (CSC). Basque Center for Applied Mathematics (BCAM), Bilbao, Spain.ORCID iD: 0000-0003-4256-0463
KTH, School of Computer Science and Communication (CSC), Computational Science and Technology (CST). Basque Center for Applied Mathematics (BCAM), Bilbao, Spain.ORCID iD: 0000-0002-1695-8809
KTH, School of Computer Science and Communication (CSC), Computational Science and Technology (CST).
KTH, School of Computer Science and Communication (CSC), Computational Science and Technology (CST).
Show others and affiliations
2017 (English)In: High-Performance Scientific Computing: Jülich Aachen Research Alliance (JARA) High-Performance Computing Symposium / [ed] Edoardo Di Napoli, Marc-André Hermanns, Hristo Iliev, Andreas Lintermann, Alexander Peyser, Springer, 2017, p. 58-69Conference paper, Published paper (Refereed)
Abstract [en]

We present a framework for coupled multiphysics in computational fluid dynamics, targeting massively parallel systems. Our strategy is based on general problem formulations in the form of partial differential equations and the finite element method, which open for automation, and optimization of a set of fundamental algorithms. We describe these algorithms, including finite element matrix assembly, adaptive mesh refinement and mesh smoothing; and multiphysics coupling methodologies such as unified continuum fluid-structure interaction (FSI), and aeroacoustics by coupled acoustic analogies. The framework is implemented as FEniCS open source software components, optimized for massively parallel computing. Examples of applications are presented, including simulation of aeroacoustic noise generated by an airplane landing gear, simulation of the blood flow in the human heart, and simulation of the human voice organ.

Place, publisher, year, edition, pages
Springer, 2017. p. 58-69
Series
Lecture Notes in Computer Science, ISSN 0302-9743 ; 10164
Keyword [en]
FEniCS, Unicorn, Eunison, High-performance computing, Multiphysics, Computational fluid dynamics, Adaptive finite element method
National Category
Computational Mathematics Computer Sciences
Identifiers
URN: urn:nbn:se:kth:diva-202694DOI: 10.1007/978-3-319-53862-4_6Scopus ID: 2-s2.0-85014945510ISBN: 978-3-319-53861-7 (print)ISBN: 978-3-319-53862-4 (electronic)OAI: oai:DiVA.org:kth-202694DiVA, id: diva2:1078151
Conference
Jülich Aachen Research Alliance (JARA) High-Performance Computing Symposium
Note

QC 20170314

Available from: 2017-03-02 Created: 2017-03-02 Last updated: 2018-05-08Bibliographically approved
In thesis
1. Adaptive Finite Element Methods for Fluid Structure Interaction Problems with Applications to Human Phonation
Open this publication in new window or tab >>Adaptive Finite Element Methods for Fluid Structure Interaction Problems with Applications to Human Phonation
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This work presents a unified framework for numerical solution of Fluid Structure Interaction (FSI) and acoustics problems with focus on human phonation. The Finite Element Method is employed for numerical investigation of partial differential equations that model conservation of momentum and mass. Since the resulting system of equations is very large, an efficient open source high performance implementation is constructed and provided. In order to gain accuracy for the numerical solutions, an adaptive mesh refinement strategy is employed which reduces the computational cost in comparison to a uniform refinement. Adaptive refinement of the mesh relies on computable error indicators which appear as a combination of a computable residual and the solution of a so-called dual problem acting as weights on computed residuals. The first main achievement of this thesis is to apply this strategy to numerical simulations of a benchmark problem for FSI. This FSI model is further extended for contact handling and applied to a realistic vocal folds geometry where the glottic wave formation was captured in the numerical simulations. This is the second achievement in the presented work. The FSI model is further coupled to an acoustics model through an acoustic analogy, for vocal folds with flow induced oscillations for a domain constructed to create the vowel /i/. The comparisons of the obtained pressure signal at specified points with respect to results from literature for the same vowel is reported, which is the final main result presented.

Abstract [sv]

Detta arbete presenterar en enhetlig ram för numerisk lösning av fluid-strukturinteraktion (FSI) och akustikproblem med fokus på det mänskligatalet. En finita elementmetod används för numerisk lösning av de partiella differentialekvationer som beskriver konserveringslagar för moment och massa.Eftersom det resulterande systemet av ekvationer är mycket stort, konstruerasen öppen källkod med hög prestanda. För att få hög noggrannhet i de numeriska lösningarna används en adaptiv nätförfiningsstrategi vilken minskar beräkningskostnaden jämfört med en uniform förfining.Adaptiv förfining av nätet bygger på beräknade felindikatorer som bygger på en kombination av en beräkningsbar residual och lösningen av ett såkallat dualt problem. Den första huvudresultatet av denna avhandling är attutveckla en och validera denna strategi för en FSI-modell i ett benchmarkproblem.Denna FSI-modell utvidgas vidare för att hantera kontaktmekanik, ochanvänds sedan för en realistisk modell av stämbandsstrukturerna där denglottiska vågformationen fångas i de numeriska simuleringarna. Detta är detandra huvudresultatet i det presenterade arbetet.FSI-modellen kopplas också till en akustikmodell genom en akustisk analogi,för modell konstruerad för att skapa vokalen / i /. Den erhållna trycksignaleni ett antal punkter jämförs med resultat från litteraturen, vilket är det slutligahuvudresultatet som presenteras.

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2018. p. 48
Series
TRITA-EECS-AVL ; 2018:38
Keyword
Fluid Structure Interaction, Finite Element Method, Contact Modeling, Acoustic Coupling, High Performance Computing
National Category
Computational Mathematics
Research subject
Applied and Computational Mathematics
Identifiers
urn:nbn:se:kth:diva-227252 (URN)978-91-7729-764-2 (ISBN)
Public defence
2018-05-23, F3, Sing-Sing, floor 2, KTH Kungliga Tekniska högskolan, Lindstedtsvägen 26, Stockholm, Stockholm, 10:30 (English)
Opponent
Supervisors
Funder
EU, FP7, Seventh Framework Programme, 308874Swedish Foundation for Strategic Research Swedish Research CouncilEU, European Research Council
Note

QC 20180509

Available from: 2018-05-09 Created: 2018-05-08 Last updated: 2018-05-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Hoffman, JohanJansson, JohanDegirmenci, Niyazi CemSpühler, Jeannette HiromiVilela de Abreu, RodrigoJansson, Niclas
By organisation
School of Computer Science and Communication (CSC)Computational Science and Technology (CST)
Computational MathematicsComputer Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 573 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf