Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A FEniCS-HPC framework for multi-compartment Bloch-Torrey models
KTH, School of Computer Science and Communication (CSC), Computational Science and Technology (CST).ORCID iD: 0000-0002-3213-0040
KTH, School of Computer Science and Communication (CSC), Computational Science and Technology (CST). BCAM - Basque Center for Applied Mathematics, Spain.
KTH, School of Computer Science and Communication (CSC), Computational Science and Technology (CST).ORCID iD: 0000-0003-4256-0463
2016 (English)In: ECCOMAS Congress 2016 - Proceedings of the 7th European Congress on Computational Methods in Applied Sciences and Engineering / [ed] Stefanou G.,Papadopoulos V.,Plevris V.,Papadrakakis M., National Technical University of Athens: National Technical University of Athens , 2016, Vol. 1, 105-119 p.Conference paper (Refereed)
Abstract [en]

In diffusion nuclear magnetic resonance (NMR) and diffusion magnetic resonance imaging (MRI), the multi-compartment Bloch-Torrey equation plays an important role in probing the diffusion characteristics from a nanometer scale to a macroscopic scale. The signal attenuation can be computed by solving the equation. If the volume of interest is composed by multiple compartments, interface conditions with permeability are imposed. Depending on applications, different gradient strengths can be used to capture the signal attenuation. In probing porous media, for instance, high gradient strengths are used. In diffusion MRI, since water molecules enter and exit the computational domain in realistic cases, pseudo-periodic boundary conditions are used. These conditions cause difficulties in solving the equation efficiently and many efforts have been made to develop an efficient numerical method. However, large-scale problems for supercomputers with realistic applications have not been considered yet. We propose a framework for the multi-compartment Bloch-Torrey models based on the FEniCS-HPC platform, a part of the FEniCS project that allows for automated discretization, automated error control with mesh adaptivity and high performance computing. The framework runs on supercomputers with near optimal weak and strong scaling. Our work includes two parts. First, we simplify the multi-compartment Bloch-Torrey model used in diffusion MRI by proposing an approximation to the pseudo-periodic boundary conditions to derive a general form for the interface and boundary conditions. The second part includes implementation and numerical validation of our method on the FEniCS-HPC platform. This simplified model is straightforward to implement and to parallelize and shows promise in validation against more realistic models.

Place, publisher, year, edition, pages
National Technical University of Athens: National Technical University of Athens , 2016. Vol. 1, 105-119 p.
Keyword [en]
Diffusion MRI, Diffusion NMR, FEniCS-HPC, Simulation, Boundary conditions, Computational methods, Diffusion, Molecules, Nuclear magnetic resonance, Numerical methods, Porous materials, Signal processing, Supercomputers, Diffusion magnetic resonance imaging, Diffusion mris, Efficient numerical method, Nuclear magnetic resonance(NMR), Periodic boundary conditions, Magnetic resonance imaging
National Category
Computer Systems
Research subject
Applied and Computational Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-201982ScopusID: 2-s2.0-84995394415ISBN: 9786188284401 (electronic)OAI: oai:DiVA.org:kth-201982DiVA: diva2:1078348
Conference
7th European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS Congress 2016, 5 June 2016 through 10 June 2016
Note

QC 20170303

Available from: 2017-03-03 Created: 2017-03-03 Last updated: 2017-03-18

Open Access in DiVA

No full text

Other links

Scopushttps://www.scopus.com/record/display.uri?eid=2-s2.0-84995394415&origin=inward&txGid=4C7F42F038065025FCBEAC7CE93BC38A.wsnAw8kcdt7IPYLO0V48gA%3a2

Search in DiVA

By author/editor
Nguyen, Van DangJansson, JohanHoffman, Johan
By organisation
Computational Science and Technology (CST)
Computer Systems

Search outside of DiVA

GoogleGoogle Scholar

Total: 168 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf