Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Deposition of particles in liquid flows in horizontal straight channels
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering. Northeastern Univ, Peoples R China.
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
2016 (English)In: International Journal of Heat and Fluid Flow, ISSN 0142-727X, E-ISSN 1879-2278, Vol. 62, 166-173 p.Article in journal (Refereed) Published
Abstract [en]

A flow in a horizontal channel is an important method for the transport of materials, products and/or waste gases/liquids. The deposition of particles in a horizontal channel may clog the flow path. The purpose of this paper is to extend the use of a developed Eulerian deposition model to liquid flows in horizontal straight channels to predict the particle deposition rate. For a horizontal pipe, the deposition rates may differ greatly along a cross section, due to the influences of gravity and buoyancy. The current deposition model is first applied to air flows to enable a comparison with available experimental data. Then, the model is applied to liquid flows in horizontal straight pipes. The effects of gravity, buoyancy, water flow rates, wall roughness, particle size and temperature difference in the near-wall boundary layer on the deposition rate have been studied and explained. The results show that the deposition rates of particles increase with an increased flow rate. The gravity separation has a large influence on the deposition of large particle at high and low parts of the horizontal pipe in some flows. Moreover, both the wall roughness and thermophoresis have a significant influence on the deposition rate of small particles. In addition, the roughness also shows an important influence on the large particle deposition at the top of the investigated pipe, due to that a large value of roughness can make the deposition location somewhat far away from the wall, where a stronger turbophoresis exists. The intensity of the turbophoresis relative to the gravity separation before a particle is reaching the deposition location is important for the large particle deposition when the gravity separation play a negative role on the deposition rate. (C) 2016 Elsevier Inc. All rights reserved.

Place, publisher, year, edition, pages
Elsevier, 2016. Vol. 62, 166-173 p.
Keyword [en]
Particle deposition, Liquid flow, Turbulent flow, Eulerian deposition model, Straight channel
National Category
Fluid Mechanics and Acoustics
Identifiers
URN: urn:nbn:se:kth:diva-202452DOI: 10.1016/j.ijheatfluidflow.2016.11.004ISI: 000391780500004Scopus ID: 2-s2.0-85002252549OAI: oai:DiVA.org:kth-202452DiVA: diva2:1078409
Note

QC 20170303

Available from: 2017-03-03 Created: 2017-03-03 Last updated: 2017-03-03Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Ni, PeiyuanJonsson, Lage Tord IngemarErsson, MikaelJönsson, Pär Göran
By organisation
Materials Science and Engineering
In the same journal
International Journal of Heat and Fluid Flow
Fluid Mechanics and Acoustics

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 5 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf