Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Battery sizing and rule-based operation of grid-connected photovoltaic-battery system: A case study in Sweden
KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology. Ningbo RK Solar Tech. Ltd., China.ORCID iD: 0000-0001-8271-7512
KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology. Mälardalen University, Västerås, Sweden.
KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
Show others and affiliations
2017 (English)In: Energy Conversion and Management, ISSN 0196-8904, E-ISSN 1879-2227, Vol. 133, 249-263 p.Article in journal (Refereed) Published
Abstract [en]

The optimal components design for grid-connected photovoltaic-battery systems should be determined with consideration of system operation. This study proposes a method to simultaneously optimize the battery capacity and rule-based operation strategy. The investigated photovoltaic-battery system is modeled using single diode photovoltaic model and Improved Shepherd battery model. Three rule-based operation strategies—including the conventional operation strategy, the dynamic price load shifting strategy, and the hybrid operation strategy—are designed and evaluated. The rule-based operation strategies introduce different operation parameters to run the system operation. multi-objective Genetic Algorithm is employed to optimize the decisional variables, including battery capacity and operation parameters, towards maximizing the system's Self Sufficiency Ratio and Net Present Value. The results indicate that employing battery with the conventional operation strategy is not profitable, although it increases Self Sufficiency Ratio. The dynamic price load shifting strategy has similar performance with the conventional operation strategy because the electricity price variation is not large enough. The proposed hybrid operation strategy outperforms other investigated strategies. When the battery capacity is lower than 72 kW h, Self Sufficiency Ratio and Net Present Value increase simultaneously with the battery capacity.

Place, publisher, year, edition, pages
Elsevier, 2017. Vol. 133, 249-263 p.
Keyword [en]
Battery, Genetic algorithm, Operation strategy, Optimization, Photovoltaic
National Category
Energy Engineering
Identifiers
URN: urn:nbn:se:kth:diva-201938DOI: 10.1016/j.enconman.2016.11.060ISI: 000392678900022Scopus ID: 2-s2.0-85006791741OAI: oai:DiVA.org:kth-201938DiVA: diva2:1079214
Note

QC 20170307

Available from: 2017-03-07 Created: 2017-03-07 Last updated: 2017-05-30Bibliographically approved
In thesis
1. Integration of Battery and Hydrogen Storage with a Grid-Connected Photovoltaic System in Buildings
Open this publication in new window or tab >>Integration of Battery and Hydrogen Storage with a Grid-Connected Photovoltaic System in Buildings
2017 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

    The integration of Photovoltaic (PV) with buildings changes the previous electricity consumers into prosumers. The reduced PV subsidies and the grid stable operation requirements are pushing prosumers from direct exportation to self-consumption of the produced electricity. Electricity storage increases the self-consumption, while comes with higher investment. During the system planning stage, the benefits of storage should be clarified to prosumers. The storage type, the storage capacity and the system operation strategy should be determined at the same time.

    This thesis dealt with a grid-connected PV-storage system and proposed an optimization method, which simultaneously determined the storage capacity and rule-based operation strategy parameters. This method eliminated the necessity of forecasting and could be easily implemented. A typical residential building in Sweden was taken as a case study. Different operation strategies as well as two storage technologies – battery storage and hydrogen storage – were compared.

    For the battery storage system, the proposed battery hybrid operation strategy, which carries out the conventional operation strategy during warm months and the peak shaving strategy during cold months, provides the best performance in Self Sufficiency Ratio (SSR) and Net Present Value (NPV). For the hydrogen storage system, the hydrogen hybrid operation strategy outperforms other studied operation strategies under different scenarios, which have optimistic or pessimistic cost assumptions of the hydrogen storage system.

    The comparison between hydrogen storage and battery storage suggests that battery storage has much better performance in SSR and NPV under the pessimistic cost scenario. Under the optimistic cost scenario, battery storage and hydrogen storage achieve comparable performance in SSR and NPV. However, hydrogen storage is more favorable when considering reducing the prosumer’s negative impact on the grid.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2017. 43 p.
Series
TRITA-CHE-Report, ISSN 1654-1081 ; 2017:25
Keyword
Photovoltaic, Grid, Building, Battery, Hydrogen Storage, Operation Strategy, Optimization
National Category
Chemical Engineering
Research subject
Energy Technology
Identifiers
urn:nbn:se:kth:diva-205211 (URN)978-91-7729-355-2 (ISBN)
Presentation
2017-05-15, E36, KTH, Lindstedtsvägen 3, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20170412

Available from: 2017-04-12 Created: 2017-04-11 Last updated: 2017-06-15Bibliographically approved
2.
The record could not be found. The reason may be that the record is no longer available or you may have typed in a wrong id in the address field.

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Zhang, YangLundblad, AndersBenavente, F.Yan, Jinyue
By organisation
Chemical Engineering and Technology
In the same journal
Energy Conversion and Management
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 56 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf