Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Non-Maxwellian background effects in gyrokinetic simulations with GENE
Show others and affiliations
2016 (English)In: Journal of Physics, Conference Series, ISSN 1742-6588, E-ISSN 1742-6596, Vol. 775, no 1, 012003Article in journal (Refereed) Published
Abstract [en]

The interaction between fast particles and core turbulence has been established as a central issue for a tokamak reactor. Recent results predict significant enhancement of electromagnetic stabilisation of ITG turbulence in the presence of fast ions. However, most of these simulations were performed with the assumption of equivalent Maxwellian distributed particles, whereas to rigorously model fast ions, a non-Maxwellian background distribution function is needed. To this aim, the underlying equations in the gyrokinetic code GENE have been re-derived and implemented for a completely general background distribution function. After verification studies, a previous investigation on a particular JET plasma has been revised with linear simulations. The plasma is composed by Deuterium, electron, Carbon impurities, NBI fast Deuterium and ICRH 3He. Fast particle distributions have been modelled with a number of different analytic choices in order to study the impact of non-Maxwellian distributions on the plasma turbulence: slowing down and anisotropic Maxwellian. Linear growth rates are studied as a function of the wave number and compared with those obtained using an equivalent Maxwellian. Generally, the choice of the 3He distribution seems to have a stronger impact on the microinstabilities than that of the fast Deuterium.

Place, publisher, year, edition, pages
2016. Vol. 775, no 1, 012003
Keyword [en]
Carbon, Deuterium, Distribution functions, Fusion reactions, Genes, Plasma turbulence, Background effects, Distributed particles, Gyrokinetic codes, Gyrokinetic simulations, Linear growth rate, Linear simulation, Microinstabilities, Non-Maxwellian distribution, Magnetoplasma
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-201865DOI: 10.1088/1742-6596/775/1/012003Scopus ID: 2-s2.0-85009752468OAI: oai:DiVA.org:kth-201865DiVA: diva2:1079325
Conference
29 August 2016 through 2 September 2016
Note

QC 20170308

Available from: 2017-03-08 Created: 2017-03-08 Last updated: 2017-11-29Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Johnson, Thomas

Search in DiVA

By author/editor
Johnson, Thomas
By organisation
Fusion Plasma Physics
In the same journal
Journal of Physics, Conference Series
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 13 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf