Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Molecular interrogation of hypothalamic organization reveals distinct dopamine neuronal subtypes
Show others and affiliations
2017 (English)In: Nature Neuroscience, ISSN 1097-6256, E-ISSN 1546-1726, Vol. 20, no 2, p. 176-188Article in journal (Refereed) Published
Abstract [en]

The hypothalamus contains the highest diversity of neurons in the brain. Many of these neurons can co-release neurotransmitters and neuropeptides in a use-dependent manner. Investigators have hitherto relied on candidate protein-based tools to correlate behavioral, endocrine and gender traits with hypothalamic neuron identity. Here we map neuronal identities in the hypothalamus by single-cell RNA sequencing. We distinguished 62 neuronal subtypes producing glutamatergic, dopaminergic or GABAergic markers for synaptic neurotransmission and harboring the ability to engage in task-dependent neurotransmitter switching. We identified dopamine neurons that uniquely coexpress the Onecut3 and Nmur2 genes, and placed these in the periventricular nucleus with many synaptic afferents arising from neuromedin S+ neurons of the suprachiasmatic nucleus. These neuroendocrine dopamine cells may contribute to the dopaminergic inhibition of prolactin secretion diurnally, as their neuromedin S+ inputs originate from neurons expressing Per2 and Per3 and their tyrosine hydroxylase phosphorylation is regulated in a circadian fashion. Overall, our catalog of neuronal subclasses provides new understanding of. hypothalamic organization and function.

Place, publisher, year, edition, pages
Nature Publishing Group, 2017. Vol. 20, no 2, p. 176-188
National Category
Biological Sciences
Identifiers
URN: urn:nbn:se:kth:diva-203160DOI: 10.1038/nn.4462ISI: 000393271000012PubMedID: 27991900OAI: oai:DiVA.org:kth-203160DiVA, id: diva2:1081946
Note

QC 20170315

Available from: 2017-03-15 Created: 2017-03-15 Last updated: 2017-11-29Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Uhlén, Mathias
By organisation
Science for Life Laboratory, SciLifeLabProteomics and Nanobiotechnology
In the same journal
Nature Neuroscience
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 29 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf