CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt145",{id:"formSmash:upper:j_idt145",widgetVar:"widget_formSmash_upper_j_idt145",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt146_j_idt148",{id:"formSmash:upper:j_idt146:j_idt148",widgetVar:"widget_formSmash_upper_j_idt146_j_idt148",target:"formSmash:upper:j_idt146:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Domino statistics of the two-periodic Aztec diamondPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2016 (English)In: Advances in Mathematics, Vol. 294, 37-149 p.Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

Elsevier, 2016. Vol. 294, 37-149 p.
##### Keyword [en]

Domino tiling; Two-periodic Aztec diamond; Kasteleyn matrix; Asymptotics; Local statistics; Airy kernel
##### National Category

Mathematics
##### Identifiers

URN: urn:nbn:se:kth:diva-203634DOI: 10.1016/j.aim.2016.02.025ISI: 000374207300002ScopusID: 2-s2.0-84960395062OAI: oai:DiVA.org:kth-203634DiVA: diva2:1082249
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt415",{id:"formSmash:j_idt415",widgetVar:"widget_formSmash_j_idt415",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt421",{id:"formSmash:j_idt421",widgetVar:"widget_formSmash_j_idt421",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt427",{id:"formSmash:j_idt427",widgetVar:"widget_formSmash_j_idt427",multiple:true});
##### Note

Random domino tilings of the Aztec diamond shape exhibit interesting features and some of the statistical properties seen in random matrix theory. As a statistical mechanical model it can be thought of as a dimer model or as a certain random surface. We consider the Aztec diamond with a two-periodic weighting which exhibits all three possible phases that occur in these types of models, often referred to as solid, liquid and gas. To analyze this model, we use entries of the inverse Kasteleyn matrix which give the probability of any configuration of dominoes. A formula for these entries, for this particular model, was derived by Chhita and Young (2014). In this paper, we find a major simplification of this formula expressing entries of the inverse Kasteleyn matrix by double contour integrals which makes it possible to investigate their asymptotics. In a part of the Aztec diamond, where the asymptotic analysis is simpler, we use this formula to show that the entries of the inverse Kasteleyn matrix converge to the known entries of the full-plane inverse Kasteleyn matrices for the different phases. We also study the detailed asymptotics of the inverse Kasteleyn matrix at both the ‘liquid–solid’ and ‘liquid–gas’ boundaries, and find the extended Airy kernel in the next order asymptotics. Finally we provide a potential candidate for a combinatorial description of the liquid–gas boundary.

QC 20170316

Available from: 2017-03-16 Created: 2017-03-16 Last updated: 2017-03-16Bibliographically approvedCiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1130",{id:"formSmash:lower:j_idt1130",widgetVar:"widget_formSmash_lower_j_idt1130",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1131_j_idt1133",{id:"formSmash:lower:j_idt1131:j_idt1133",widgetVar:"widget_formSmash_lower_j_idt1131_j_idt1133",target:"formSmash:lower:j_idt1131:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});