Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Method for Reliability Analysis of Distribution Grid Communications Using PRMs-Monte Carlo Methods
KTH, School of Electrical Engineering (EES), Electric Power and Energy Systems. KTH - Royal Institute of Technology. (PSOC)ORCID iD: 0000-0002-2014-0444
KTH, School of Electrical Engineering (EES). KTH - Royal Institute of Technology.
KTH, School of Electrical Engineering (EES), Electric Power and Energy Systems. KTH - Royal Institute of Technology.ORCID iD: 0000-0001-7386-7471
KTH, School of Electrical Engineering (EES), Electric Power and Energy Systems. KTH - Royal Institute of Technology. (PSOC)ORCID iD: 0000-0003-3014-5609
2017 (English)Conference paper, Published paper (Refereed)
Abstract [en]

This paper presents a method to perform reliability analysis of communication systems for distribution grids. The method uses probabilistic relational models to indicate the probabilistic dependencies between the components that form the communication system and it is implemented by Monte Carlo methods. This method can be used for performing reliability predictions of simulated communication systems and for evaluating the reliability of real systems. The paper contains a case study in which the proposed method is applied to evaluate the reliability of the communication systems that are required for monitoring the network components at low voltage levels using the smart metering infrastructure. This case study is taken fromthe EU FP7 DISCERN project. Finally, the results are presented in a quantitative way, showing the individual reliability of each component and the combined reliability of the entire system.

Place, publisher, year, edition, pages
2017.
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:kth:diva-203886OAI: oai:DiVA.org:kth-203886DiVA: diva2:1082889
Conference
IEEE Power and Energy Society (PES) General Meeting 2017, Chicago, IL
Funder
SweGRIDS - Swedish Centre for Smart Grids and Energy Storage
Note

QCR 20170406

Available from: 2017-03-19 Created: 2017-03-19 Last updated: 2017-11-06Bibliographically approved
In thesis
1. Cost-effective Communication and Control Architectures for Active Low Voltage Grids
Open this publication in new window or tab >>Cost-effective Communication and Control Architectures for Active Low Voltage Grids
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The monitoring and control of low voltage distribution grids has historically been disregarded due to the unidirectional flow of power. However, nowadays the massive integration of distributed energy resources into distribution grids, such as solar photovoltaics, distributed storage, electric vehicles and demand response programs, presents some challenges. For instance, the unidirectional top-down power flow is being replaced by power flows in any direction: top-down and bottom-up. This paradigm shift adds extra regulatory, economic, and technical complexity for the Distribution System Operators (DSO). Thus to overcome the possible operational constraints, thermal limits, or voltage problems in the grid, an update of the existing electricity infrastructures is required. In response to this new situation, this thesis investigates the cost-effective communication and control architectures that are required for active low voltage grid monitoring and control applications, considering the regulatory constraints and the efficient utilization of the assets from a DSO’s perspective. The solutions include: i) optimal sensor placement configuration to perform low voltage state estimation, ii) optimal metering infrastructure designs for active low voltage monitoring applications, iii) coordinated control strategies to allow the integration of microgrid-like structures into the distribution grids, iv) optimal placement of actuators for operating the control strategies, v) a multiagent-based control solution for self-healing and feeder reconfiguration applications, and vi) a framework model and simulations to assess the reliability of the ICT infrastructure that enables the monitoring and control applications. As concluding remark, since the deployment of technology at low voltage grids is restricted to assets owned by the DSO, the operability of the grid is limited. This condition makes it so that the required communication and control enhancement solutions shall prioritize cost-effectiveness over comprehensiveness and complexity. Thus, the results from the presented studies show that it is essential to perform thorough cost-benefit analyses of the potential improvement solutions for each grid, because this will allow deploying the right technology only at the necessary locations.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2017. 69 p.
Series
TRITA-EE, ISSN 1653-5146 ; 2017:160
Keyword
Active low voltage distribution grids, CAPEX & OPEX, communication & control architectures, cost-effectiveness, MPC, multiagent systems, photovoltaics, voltage control.
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-217271 (URN)978-91-7729-588-4 (ISBN)
Public defence
2017-12-18, Kollegiesal, Brinellvägen 8, KTH-huset, floor 4, KTH Campus, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
SweGRIDS - Swedish Centre for Smart Grids and Energy Storage
Note

QC 20171106

Available from: 2017-11-06 Created: 2017-11-06 Last updated: 2017-11-28Bibliographically approved

Open Access in DiVA

No full text

Other links

http://www.pes-gm.org/2017/

Authority records BETA

Nordström, Lars

Search in DiVA

By author/editor
Armendariz, MikelKorman, MatusNordström, Lars
By organisation
Electric Power and Energy SystemsSchool of Electrical Engineering (EES)
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 118 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf