Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Evolutionary engineering reveals divergent paths when yeast is adapted to different acidic environments
KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
Show others and affiliations
2017 (English)In: Metabolic engineering, ISSN 1096-7176, E-ISSN 1096-7184, Vol. 39, 19-28 p.Article in journal (Refereed) Published
Abstract [en]

Tolerance of yeast to acid stress is important for many industrial processes including organic acid production. Therefore, elucidating the molecular basis of long term adaptation to acidic environments will be beneficial for engineering production strains to thrive under such harsh conditions. Previous studies using gene expression analysis have suggested that both organic and inorganic acids display similar responses during short term exposure to acidic conditions. However, biological mechanisms that will lead to long term adaptation of yeast to acidic conditions remains unknown and whether these mechanisms will be similar for tolerance to both organic and inorganic acids is yet to be explored. We therefore evolved Saccharomyces cerevisiae to acquire tolerance to HCl (inorganic acid) and to 0.3 M L-lactic acid (organic acid) at pH 2.8 and then isolated several low pH tolerant strains. Whole genome sequencing and RNA-seq analysis of the evolved strains revealed different sets of genome alterations suggesting a divergence in adaptation to these two acids. An altered sterol composition and impaired iron uptake contributed to HCl tolerance whereas the formation of a multicellular morphology and rapid lactate degradation was crucial for tolerance to high concentrations of lactic acid. Our findings highlight the contribution of both the selection pressure and nature of the acid as a driver for directing the evolutionary path towards tolerance to low pH. The choice of carbon source was also an important factor in the evolutionary process since cells evolved on two different carbon sources (raffinose and glucose) generated a different set of mutations in response to the presence of lactic acid. Therefore, different strategies are required for a rational design of low pH tolerant strains depending on the acid of interest.

Place, publisher, year, edition, pages
Academic Press, 2017. Vol. 39, 19-28 p.
Keyword [en]
Adaptive laboratory evolution, Lactic acid, Low pH, Yeast, Biology, Gene expression, Genes, Inorganic acids, Organic acids, Plants (botany), Biological mechanisms, Different carbon sources, Evolutionary engineering, Evolutionary process, Gene expression analysis, Organic acid productions, Whole genome sequencing
National Category
Biological Sciences
Identifiers
URN: urn:nbn:se:kth:diva-202835DOI: 10.1016/j.ymben.2016.10.010ISI: 000392565200003Scopus ID: 2-s2.0-85008240309OAI: oai:DiVA.org:kth-202835DiVA: diva2:1082945
Funder
Novo NordiskKnut and Alice Wallenberg Foundation
Note

QC 20170320

Available from: 2017-03-20 Created: 2017-03-20 Last updated: 2017-03-20Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Hallström, Björn M.Nielsen, Jens
By organisation
Proteomics and NanobiotechnologyScience for Life Laboratory, SciLifeLabGene Technology
In the same journal
Metabolic engineering
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 3 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf