Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Understanding the Dispersive Action of Nanocellulose for Carbon Nanomaterials
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. KTH.ORCID iD: 0000-0003-0298-8553
Linköping University. (Division of Solid Mechanics, Department of Management and Engineering)ORCID iD: 0000-0002-1503-8293
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. KTH.ORCID iD: 0000-0002-5444-7276
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. KTH.ORCID iD: 0000-0001-9088-1064
Show others and affiliations
2017 (English)In: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 17, no 3, p. 1439-1447Article in journal (Refereed) Published
Abstract [en]

This work aims at understanding the excellent ability of nanocelluloses to disperse carbon nanomaterials (CNs) in aqueous media to form long-term stable colloidal dispersions without the need for chemical functionalization of the CNs or the use of surfactant. These dispersions are useful for composites with high CN content when seeking water-based, efficient, and green pathways for their preparation. To establish a comprehensive understanding of such dispersion mechanism, colloidal characterization of the dispersions has been combined with surface adhesion measurements using colloidal probe atomic force microscopy (AFM) in aqueous media. AFM results based on model surfaces of graphene and nanocellulose further suggest that there is an association between the nanocellulose and the CN. This association is caused by fluctuations of the counterions on the surface of the nanocellulose inducing dipoles in the sp2carbon lattice surface of the CNs. Furthermore, the charges on the nanocellulose will induce an electrostatic stabilization of the nanocellulose–CN complexes that prevents aggregation. On the basis of this understanding, nanocelluloses with high surface charge density were used to disperse and stabilize carbon nanotubes (CNTs) and reduced graphene oxide particles in water, so that further increases in the dispersion limit of CNTs could be obtained. The dispersion limit reached the value of 75 wt % CNTs and resulted in high electrical conductivity (515 S/cm) and high modulus (14 GPa) of the CNT composite nanopapers.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2017. Vol. 17, no 3, p. 1439-1447
Keyword [en]
nanocellulose, carbon nanotubes, graphene, interaction, surface charge, conductivity, counterions
National Category
Nano Technology Physical Chemistry Materials Chemistry Paper, Pulp and Fiber Technology Composite Science and Engineering
Identifiers
URN: urn:nbn:se:kth:diva-203930DOI: 10.1021/acs.nanolett.6b04405ISI: 000396185800018Scopus ID: 2-s2.0-85014970890OAI: oai:DiVA.org:kth-203930DiVA, id: diva2:1083131
Funder
Knut and Alice Wallenberg Foundation
Note

QC 20170327

Available from: 2017-03-20 Created: 2017-03-20 Last updated: 2018-02-21Bibliographically approved
In thesis
1. Cellulose–Assisted Dispersion of Carbon Nanotubes: From Colloids to Composites
Open this publication in new window or tab >>Cellulose–Assisted Dispersion of Carbon Nanotubes: From Colloids to Composites
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

It is a challenge to disperse nanoparticles to obtain a nanostructured composite. This thesis aims at providing a new route to fabricate carbon nanotube (CNT) composites and suggests mechanisms for nanocellulose–CNT interactions. This route is based on unmodified CNT dispersed in water with the help of nanocellulose. Chemical functionalization of the CNTs and the addition of surfactants are avoided. Thus, the mechanical and electrical properties of such nanotube composites can be improved.

Cellulose derivatives can disperse and stabilize carbon nanotubes in water. Nanocellulose particles, such as cellulose nanofibrils (CNF), are a new form of cellulose derivatives that are able to disperse and stabilize untreated carbon nanotubes in water. The utilization of the hybrid CNF–CNT dispersions are shown to lead to strong nanostructured composites with high nanotube content and conductivity. The mechanism behind the dispersive action of nanocellulose for nanotubes is explored and studied in detail. The dispersive ability of the nanocellulose leads to improved properties of CNF–CNT composites.

Apart from studies of structure and properties of composite fibers and films, two different functional materials are studied in detail. One is to form conductive patterns on cellulose nanopaper for the stable function of printed electronics in various environmental conditions and during handling. The second is to use a water-soluble cellulosic polymer–nanotube dispersion to fabricate superelastic aerogels without any chemical crosslinking or the addition of another component. This makes the aerogels easily recyclable (redispersible in water) and opens a new route for recyclable superelastic CNT composite aerogels.

Abstract [sv]

Det är en utmaning att dispergera nanopartiklar för nanostrukturerade kompositer. Avhandlingen beskriver en ny väg för att framställa kompositer från kolnanorör (CNT) och föreslår mekanismer för växelverkan mellan CNT och CNF. Den nya vägen baseras sig på dispergering av CNT i vatten med hjälp av CNF. CNT behöver inte modifieras kemiskt eller med ytaktiva ämnen. Mekaniska och elektriska egenskaper hos materialen kan därför förbättras.

Cellulsosaderivat kan dispergera och stabilisera CNT i vatten. Nanocellulosa är en ny typ av derivat, i form av fibriller eller nanokristaller, som kan dispergera och stabilisera icke modifierade CNT i vatten. Dispersioner av CNF-CNT används för att framställa starka nanokompositer med hög CNT-halt och hög elektrisk ledningsförmåga. Dispergerings-mekanismen studeras och förklaras från experimentella data. Den dispergerande förmågan hos CNF leder till förbättrade egenskaper hos CNF-CNT-kompositer.

Struktur-egenskaps relationer för fibrer och filmer rapporteras. Två typer av funktionella material studeras i detalj. Ett av materialen består av ledande mönster av CNF-CNT på substrat av nanocellulosa. Det andra exemplet är superelastiska aerogeler utan kemisk tvärbindning. Aerogelerna kan återvinnas och öppnar möjligheter för superelastiska aerogeler.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2018. p. 55
Series
TRITA-CBH-FOU ; 2018:2
Keyword
Nanocelluloses, Carbon nanotubes, Composites, Colloids
National Category
Composite Science and Engineering Paper, Pulp and Fiber Technology Nano Technology
Research subject
Fibre and Polymer Science
Identifiers
urn:nbn:se:kth:diva-223453 (URN)978-91-7729-685-0 (ISBN)
Public defence
2018-03-14, F3, Lindstedtsvägen 26, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20180221

Available from: 2018-02-21 Created: 2018-02-21 Last updated: 2018-03-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Hajian, AlirezaLindström, Stefan B.Pettersson, TorbjörnHamedi, Mahiar M.Wågberg, Lars
By organisation
Fibre and Polymer TechnologyWallenberg Wood Science Center
In the same journal
Nano letters (Print)
Nano TechnologyPhysical ChemistryMaterials ChemistryPaper, Pulp and Fiber TechnologyComposite Science and Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 1139 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf