Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A strategy for determining the regional geoid in developing countries by combining limited ground data with satellite-based global geopotential and topographical models: A case study of Iran
KTH, School of Architecture and the Built Environment (ABE), Transport and Economics.
2006 (English)In: Journal of Geodesy, ISSN 0949-7714, E-ISSN 1432-1394, J. Geodesy, Vol. 79, no 10,11, 602–612- p.Article in journal (Refereed) Published
Abstract [en]

The computation of regional gravimetric geoid models with reasonable accuracy, in developing countries, with sparse data is a difficult task that needs great care. Here we investigate the procedure for gathering, evaluating and combining different data for the determination of a gravimetric geoid model for Iran, where limited ground gravity data are available. Heterogeneous data, including gravity anomalies, the high-resolution Shuttle Radar Topography Mission global digital terrain model and different global geopotential models including recently published Gravity Recovery and Climate Experiment models, are combined through least-squares modification of the Stokes formula. The new gravimetric geoid model, IRG04, agrees considerably better with GPS/levelling than any of the other recent local geoid model in the area. Its RMS fit with GPS/levelling is 0.27 m and 3.8 ppm in the absolute and relative view, respectively. The relative accuracy of IRG04 is four times better than the most recently published global and regional geoid models available in this area. This progress shows the practical potential of the method of least-squares modification of Stokes's formula in combination with heterogeneous data for regional geoid determination.

Place, publisher, year, edition, pages
2006. Vol. 79, no 10,11, 602–612- p.
Keyword [en]
gravity database, least-squares modification of Stokes's formula, regional geoid determination, SRTM, GRACE, GPS/levelling, Iran
National Category
Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:kth:diva-6193DOI: 10.1007/s00190-005-0009-5ISI: 000235270800004Scopus ID: 2-s2.0-33746648141OAI: oai:DiVA.org:kth-6193DiVA: diva2:10834
Note
QC 20100906Available from: 2006-10-03 Created: 2006-10-03 Last updated: 2010-09-06Bibliographically approved
In thesis
1. Precise Gravimetric Geoid Model for Iran Based on GRACE and SRTM Data and the Least-Squares Modification of Stokes’ Formula: with Some Geodynamic Interpretations
Open this publication in new window or tab >>Precise Gravimetric Geoid Model for Iran Based on GRACE and SRTM Data and the Least-Squares Modification of Stokes’ Formula: with Some Geodynamic Interpretations
2006 (English)Doctoral thesis, comprehensive summary (Other scientific)
Abstract [en]

Iran is one of the most complicated areas in the world from the view of rough topography, tectonic activity, large lateral density and geoidal height variations. The computation of a regional gravimetric geoid model with high accuracy in mountainous regions, especially with sparse data, is a difficult task that needs a special attention to obtain reliable results which can meet the needs of the today geodetic community.

In this research different heterogeneous data has been used, which includes gravity anomalies, the high-resolution SRTM Digital Elevation Model (DEM), recently published GRACE Global Geopotential Models (GGMs), geological maps and GPS/levelling data. The above data has been optimally combined through the least-squares modification of Stokes formula with additive corrections. Regarding the data evaluation and refinement, the cross-validation technique has been used for detection of outliers. Also, several GGMs and DEMs are evaluated with GPS/levelling data. The impact of utilizing a high resolution SRTM DEM to improve the accuracy of the geoid model has been studied. Also, a density variation model has been established, and its effect on the accuracy of the geoid was investigated. Thereafter a new height datum for Iran was established based on the corrective surface idea. Finally, it was found that there is a significant correlation between the lateral geoid slope and the tectonic activities in Iran.

We show that our hybrid gravimetric geoid model IRG04 agrees considerably better with GPS/levelling than any of the other recent local geoid models in the area. Its RMS fit with GPS/levelling is 27 cm and 3.8 ppm in the absolute and relative senses, respectively. Moreover, the relative accuracy of the IRG04 geoid model is at least 4 times better than any of the previously published global and regional geoid models in the area. Also, the RMS fit of the combined surface model (IRG04C) versus independent precise GPS/levelling is almost 4 times better compared to the original gravimetric geoid model (IRG04). These achievements clearly show the effect of the new gravity database and the SRTM data for the regional geoid determination in Iran based on the least-squares modification of Stokes’ formula.

Place, publisher, year, edition, pages
Stockholm: KTH, 2006. viii, 89 p.
Series
TRITA-INFRA, ISSN 1651-0216 ; 06-003
Keyword
Gravity database, least-squares modification of Stokes, geoid determination, SRTM, GRACE, GPS/levelling, density variation model, height datum, geodynamics, Iran
National Category
Earth and Related Environmental Sciences
Identifiers
urn:nbn:se:kth:diva-4125 (URN)978-91-85539-06-2 (ISBN)
Public defence
2006-10-27, D1, Lindstedtsvägen 17, 2tr, 13:00
Opponent
Supervisors
Note

QC 20100906

Available from: 2006-10-03 Created: 2006-10-03 Last updated: 2017-02-23Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopushttp://dx.doi.org/10.1007/s00190-005-0009-5

Search in DiVA

By author/editor
Kiamehr, Ramin
By organisation
Transport and Economics
In the same journal
Journal of Geodesy
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 112 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf