Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
High-Performance Regular Perovskite Solar Cells Employing Low-Cost Poly(ethylenedioxythiophene) as a Hole-Transporting Material
Show others and affiliations
2017 (English)In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 7, 42564Article in journal (Refereed) Published
Abstract [en]

Herein, we successfully applied a facile in-situ solid-state synthesis of conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) as a HTM, directly on top of the perovskite layer, in conventional mesoscopic perovskite solar cells (PSCs) (n-i-p structure). The fabrication of the PEDOT film only involved a very simple in-situ solid-state polymerisation step from a monomer 2,5-dibromo-3,4-ethylenedioxythiophene (DBEDOT) made from a commercially available and cheap starting material. The ultraviolet photoelectron spectroscopy (UPS) demonstrated that the as-prepared PEDOT film possesses the highest occupied molecular orbital (HOMO) energy level of -5.5 eV, which facilitates an effective hole extraction from the perovskite absorber as confirmed by the photoluminescence measurements. Optimised PSC devices employing this polymeric HTM in combination with a low-cost vacuum-free carbon cathode (replacing the gold), show an excellent power conversion efficiency (PCE) of 17.0% measured at 100 mW cm(-2) illumination (AM 1.5G), with an open-circuit voltage (V-oc) of 1.05 V, a short-circuit current density (J(sc)) of 23.5 mA/cm(2) and a fill factor (FF) of 0.69, respectively. The present finding highlights the potential application of PEDOT made from solid-state polymerisation as a HTM for cost-effective and highly efficient PSCs.

Place, publisher, year, edition, pages
Nature Publishing Group, 2017. Vol. 7, 42564
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-203825DOI: 10.1038/srep42564ISI: 000394161300001PubMedID: 28211919Scopus ID: 2-s2.0-85012241601OAI: oai:DiVA.org:kth-203825DiVA: diva2:1083415
Note

QC 20170321

Available from: 2017-03-21 Created: 2017-03-21 Last updated: 2017-03-21Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMedScopus

Search in DiVA

By author/editor
Sun, Licheng
By organisation
Organic Chemistry
In the same journal
Scientific Reports
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 4 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf