Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A multi-model comparison of soil carbon assessment of a coniferous forest stand
Swedish University of Agricultural Sciences, Uppsala, Sweden.ORCID iD: 0000-0002-0926-3304
Show others and affiliations
2012 (English)In: Environmental Modelling & Software, ISSN 1364-8152, E-ISSN 1873-6726, Vol. 35, 38-49 p.Article in journal (Refereed) Published
Resource type
Text
Abstract [en]

We simulated soil carbon stock dynamics of an Austrian coniferous forest stand with five soil-only models (Q, ROMUL, RothC, SoilCO2/RothC and Yasso07) and three plant-soil models (CENTURY, CoupModel and Forest-DNDC) for an 18-year period and the decomposition of a litter pulse over a 100-year period. The objectives of the study were to assess the consistency in soil carbon estimates applying a multi-model comparison and to present and discuss the sources of uncertainties that create the differences in model results. Additionally, we discuss the applicability of different modelling approaches from the view point of large-scale carbon assessments. Our simulation results showed a wide range in soil carbon stocks and stock change estimates reflecting substantial uncertainties in model estimates. The measured stock change estimate decreased much more than the model predictions. Model results varied not only due to the model structure and applied parameters, but also due to different input information and assumptions applied during the modelling processes. Initialization procedures applied with the models induced large differences among the modelled soil carbon stocks and stock change estimates. Decomposition estimates of the litter pulse driven by model structures and parameters also varied considerably. Our results support the use of relatively simple soil-only models with low data requirements in inventory type of large-scale carbon assessments. It is important that the modelling processes within the national inventories are transparently reported and special emphasis is put on how the models are used, which assumptions are applied and what is the quality of data used both as input and to calibrate the models. © 2012 Elsevier Ltd.

Place, publisher, year, edition, pages
Elsevier, 2012. Vol. 35, 38-49 p.
Keyword [en]
Carbon balance, Forest, Model comparison, Simulation model, Soil carbon, Uncertainty, Carbon, Computer simulation, Estimation, Forestry, Model structures, Soils, Uncertainty analysis, Geologic models, calibration, coniferous forest, decomposition, environmental modeling, forest soil, litter, Models, Simulation, Soil, Austria
National Category
Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:kth:diva-178731DOI: 10.1016/j.envsoft.2012.02.004Scopus ID: 2-s2.0-84862818902OAI: oai:DiVA.org:kth-178731DiVA: diva2:1083771
Note

References: Ågren, G.I., Hyvönen, R., Nilsson, T., Are Swedish forest soils sinks or sources for CO 2-model analyses based on forest inventory data (2007) Biogeochemistry, 82, pp. 217-227; (2000) Anonymous Hydrographisches Jahrbuch von österreich. Hydrological Yearbook of Austria 1997. (In German), pp. 453 pp. , Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, Vienna, Austria; Bellamy, P.H., Loveland, P.J., Bradley, R.I., Lark, R.M., Kirk, G.J.D., Carbon losses from all soils across England and Wales 1978-2003 (2005) Nature, 437, pp. 245-248; Blum, W.E.H., Englisch, M., Freudenschuß, A., Nelhiebel, P., Pock, H., Schneider, W., Schwarz, S., Wandl, M., Soil survey and soil data in Austria (2005) European Soil Bureau Research Report No. 9, EUR 20559 EN, pp. 47-61. , Office for Official Publications of the European Communities, Luxembourg, R.J.A. Jones, B. Houšková, P. Bullock, L. Montanarella (Eds.) Soil Resources of Europe; Chatfield, C., Model uncertainty, data mining and statistical-inference (1995) J. Roy. Stat. Soc. A Sta., 158, pp. 419-466; Chen, J.Q., Franklin, J.F., Spies, T.A., Contrasting microclimates among clear-cut, edge, and interior of old-growth Douglas-Fir forest (1993) Agric. For. Meteorol., 63, pp. 219-237; Chertov, O.G., Komarov, A.S., Nadporozhskaya, M., Bykhovets, S.S., Zudin, S.L., ROMUL - a model of forest soil organic matter dynamics as a substantial tool for forest ecosystem modeling (2001) Ecol. Model., 138, pp. 289-308; Chertov, O.G., Komarov, A.S., Bykhovets, S.S., Kobak, K.I., Simulated soil organic matter dynamics in forests of the Leningrad administrative area, northwestern Russia (2002) For. Ecol. Manage., 169, pp. 29-44; Chertov, O.G., Bykhovets, S., Nadporozhskaya, M.A., Komarov, A., Larionova, A.A., Evaluation of the rates of transformation of soil organic matter in the ROMUL model (2007) Modelling of Organic Matter Dynamics in Forest Ecosystems (in Russian), pp. 83-99. , Moscow Hayka, Moscow, V.N. Kudeyarov (Ed.); Coleman, K., Jenkinson, D.S., RothC-26.3-A Model for the turnover of carbon in soil (1996) Evaluation of Soil Organic Matter Models, Using Existing Long-Term Datasets, pp. 237-246. , Springer-Verlag, Heidelberg, Germany, D.S. Powlson, P. Smith, J.U. Smith (Eds.); Coleman, K., Jenkinson, D.S., Crocker, G.J., Grace, P.R., Klir, J., Korschens, M., Poulton, P.R., Richter, D.D., Simulating trends in soil organic carbon in long-term experiments using RothC-26.3 (1997) Geoderma, 81, pp. 29-44; Conen, F., Yakutin, M.V., Sambuu, A.D., Potential for detecting changes in soil organic carbon concentrations resulting from climate change (2003) Global Change Biol., 9, pp. 1515-1520; Cools, N., De Vos, B., Sampling and analysis of soil (2010) Manual on Methods and Criteria for Harmonized Sampling, Assessment, Monitoring and Analysis of the Effects of Air Pollution on Forests, p. 208. , UNECE, ICP Forest, Hamburg; Duursma, R.A., Equations for Water Balance Calculations in SPP (2005) Forest Modelling Group Working Papers, 1, , University of Helsinki, Department of Forest Ecology, Helsinki; Gaudinski, J.B., Trumbore, S.E., Davidson, E.A., Zheng, S.H., Soil carbon cycling in a temperate forest: radiocarbon-based estimates of residence times, sequestration rates and partitioning of fluxes (2000) Biogeochemistry, 51, pp. 33-69; Hammer, R.D., O'Brien, R.G., Lewis, R.J., Temporal and spatial soil variability on three forested land types on the mid-Cumberland plateau (1987) Soil Sci. Soc. Am. J., 51, pp. 1320-1326; Helmisaari, H., Derome, J., Nöjd, P., Kukkola, M., Fine root biomass in relation to site and stand characteristics in Norway spruce and Scots pine stands (2007) Tree Physiol., 27, pp. 1493-1504; Herbst, M., Hellebrand, H.J., Bauer, J., Huisman, J.A., Šimůnek, J., Weihermüller, L., Graf, A., Vereecken, H., Multiyear heterotrophic soil respiration: evaluation of a coupled CO 2 transport and carbon turnover model (2008) Ecol. Model., 214, pp. 271-283; Hyvönen, R., ågren, G.I., Decomposer invasion rate, decomposer growth rate, and substrate chemical quality: how they influence soil organic matter turnover (2001) Can. J. For. Res., 31, pp. 1594-1601; (2003) IPCC Good Practice Guidance for Land Use, Land-use Change and Forestry, , http://www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf.html, Institute for Global Environmental Strategies (IGES), Japan; (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories, , http://www.ipcc-nggip.iges.or.jp/public/2006gl, Institute for Global Environmental Strategies (IGES), Japan, IPCC; Janssens, I.A., Freibauer, A., Ciais, P., Smith, P., Nabuurs, G., Folberth, G., Schlamadinger, B., Dolman, A.J., Europe's terrestrial biosphere absorbs 7 to 12% of European anthropogenic CO 2 emissions (2003) Science, 300, p. 1538; Jansson, P., Karlberg, L., (2004) COUP Manual. Coupled Heat and Mass Transfer Model for Soil-plant-atmosphere Systems, , Stockholm, Sweden, 445 p; Jenkinson, D.S., Rayner, J.H., The turnover of soil organic matter in some of the Rothamsted classical experiments (1977) Soil Sci., 123, pp. 298-305; Jenkinson, D.S., Harkness, D.D., Vance, D.E., Adams, D.E., Harrison, A.F., Calculating net primary production and annual input of organic matter to soil from the amount and radiocarbon content of soil organic matter (1992) Soil Biol. Biochem., 24, pp. 295-308; Jenkinson, D.S., Coleman, K., Calculating the annual input of organic matter to soil from measurements of total organic carbon and radiocarbon (1994) Eur. J. Soil Sci., 45, pp. 167-174; Jobbágy, E.G., Jackson, R.B., The vertical distribution of soil organic carbon and its relation to climate and vegetation (2000) Ecol. Appl., 10, pp. 423-436; Kelly, R.H., Parton, W.J., Crocker, G.J., Grace, P.R., Klir, J., Korschens, M., Poulton, P.R., Richter, D.D., Simulating trends in soil organic carbon in long-term experiments using the century model (1997) Geoderma, 81, pp. 75-90; Kesik, M., Brüggemann, N., Forkel, R., Kiese, R., Knoche, R., Li, C., Seufert, G., Butterbach-Bahl, K., Future scenarios of N 2O and NO emissions from European forest soils (2006) J. Geophys. Res. - Biogeosci., 111, pp. G02018; Korzukhin, M.D., Ter-Mikaelian, M.T., Wagner, R.G., Process versus empirical models: which approach for forest ecosystem management? (1996) Can. J. For. Res., 26, pp. 879-887; Kurbatova, J., Li, C., Varlagin, A., Xiao, X., Vygodskaya, N., Modeling carbon dynamics in two adjacent spruce forests with different soil conditions in Russia (2008) Biogeosciences, 5, pp. 969-980; Levy, P.E., Hale, S.E., Nicoll, B.C., Biomass expansion factors and root: shoot ratios for coniferous tree species in Great Britain (2004) Forestry, 77, pp. 421-430; Levy, P.E., Wendler, R., Van Oijen, M., Cannell, M.G.R., Millard, P., The effect of nitrogen enrichment on the carbon sink in coniferous forests: uncertainty and sensitivity analyses of three ecosystem models (2005) Water Air Soil Pollut., 4, pp. 67-74; Li, C.S., Modeling trace gas emissions from agricultural ecosystems (2000) Nutr. Cycl. Agroecosyst., 58, pp. 259-276; Li, C., Frolking, S., Frolking, T.A., A model of nitrous-oxide evolution from soil driven by rainfall events. 1. Model structure and sensitivity (1992) J. Geophys. Res. - Atmos., 97, pp. 9759-9776; Li, C.S., Frolking, S., Frolking, T.A., A Model of nitrous-oxide evolution from soil driven by rainfall events. 2. Model applications (1992) J. Geophys. Res. - Atmos., 97, pp. 9777-9783; Li, C.S., Aber, J., Stange, F., Butterbach-Bahl, K., Papen, H., A process-oriented model of N 2O and NO emissions from forest soils: 1. Model development (2000) J. Geophys. Res. - Atmos., 105, pp. 4369-4384; Linacre, E.T., A simple formula for estimating evaporation rates in various climates, using temperature data alone (1977) Agr. Meteorol., 18, pp. 409-424; Liski, J., Tuomi, M., Rasinmäki, J., (2009) Yasso07 User-Interface Manual, , http://www.environment.fi/syke/yasso, Finnish Environment Institute, Helsinki, 14 p; Liski, J., Lehtonen, A., Peltoniemi, M., Palosuo, T., Muukkonen, P., Eggers, T., Mäkipää, R., Carbon sink of the Finnish forests 1920-2000: an assessment based on forest inventory data and dynamic modelling of soil carbon (2006) Ann. For. Sci., 63, pp. 687-697; Mäkipää, R., Häkkinen, M., Muukkonen, P., Peltoniemi, M., The costs of monitoring changes in forest soil carbon stocks (2008) Boreal Environ. Res., 13, pp. 120-130; Mäkipää, R., Linkosalo, T., Niinimäki, S., Komarov, A., Bykhovets, S., Tahvonen, O., Mäkelä, A., How forest management and climate change affect the carbon sequestration of a Norway spruce stand (2011) J. For. Plan., 16, pp. 107-120; Metherell, A., Harding, L.A., Cole, C.V., Parton, W.J., Technical Documentation Agroecosystem Version 4.0 (1993) Technical Report, 4, , Great Plains System Research Unit, USDA-ARS, Fort Collins, Colorado, U.S; Monteith, J.L., Evaporation and environment (1965) Symp. Soc. Exp. Biol., 19, pp. 205-234; Murphy, J.M., Sexton, D.M.H., Barnett, D.N., Jones, G.S., Webb, M.J., Collins, M., Stainforth, D.A., Quantification of modelling uncertainties in a large ensemble of climate change simulations (2004) Nature, 430, pp. 768-772; Muukkonen, P., Lehtonen, A., Needle and branch biomass turnover rates of Norway spruce (Picea abies) (2004) Can. J. For. Res., 34, pp. 2517-2527; Muukkonen, P., Häkkinen, M., Mäkipää, R., Spatial variation in soil carbon in the organic layer of managed boreal forest soil-implications for sampling design (2009) Environ. Monit. Assess., 158, pp. 67-76; Nadporozhskaya, M.A., Mohren, G.M.J., Chertov, O.G., Komarov, A.S., Mikhailov, A.V., Dynamics of soil organic matter in primary and secondary forest succession on sandy soils in the Netherlands: an application of the ROMUL model (2006) Ecol. Model., 190, pp. 399-418; Neumann, M., Schnabel, G., Gärtner, M., Starlinger, F., Fürst, A., Mutsch, F., Englisch, M., Gartner, K., Waldbodenzustandmonitoring in österreich - Ergebnisse der Intensivbeobachtungsflächen (Level II) (In German) (2001) Berichte der FBVA, 122, pp. 7-35; Ortiz, C., Karltun, E., Stendahl, J., Gärdenäs, A.I., ågren, G.I., Modelling soil carbon development in Swedish coniferous forest soils-an uncertainty analysis of parameters and model estimates using the GLUE method (2011) Ecol. Model., 222, pp. 3020-3032; Ortiz, C., Lundblad, M., Liski, J., Stendahl, J., Karltun, E., Lehtonen, A., Gärdenäs, A., Measurements and Models - A Comparison of Quantification Methods for SOC Changes in Forest Soils (2009) SMED Report, 31, , Swedish Meteorological and Hydrological Institute, Norrköping, Sweden, 30 p; Palosuo, T., Kersebaum, K.C., Angulo, C., Hlavinka, P., Moriondo, M., Olesen, J.E., Patil, R.H., Rötter, R., Simulation of winter wheat yield and its variability in different climates of Europe: a comparison of eight crop growth models (2011) Eur. J. Agron., 35, pp. 103-114; Parton, W.J., McKeown, B., Kirchner, V., Ojima, D.S., (1992) CENTURY Users Manual, , NREL Publication, Colorado State University, Fort Collins, Colorado, USA; Parton, W.J., Schimel, D.S., Cole, C.V., Ojima, D.S., Analysis of factors controlling soil organic matter levels in Great Plains grasslands (1987) Soil Sci. Soc. Am. J., 51, pp. 1173-1179; Parton, W.J., Ojima, D.S., Cole, C.V., Schimel, D.S., A general model for soil organic matter dynamics: sensitivity to litter chemistry, texture and management (1994) Quantitative Modeling of Soil Forming Processes: Proceedings of a Symposium Sponsored by Divisions S-5 and S-9 of the Soil Science Society of America in Minneapolis, Minnesota, USA, 2 Nov. 1992, pp. 147-167. , Soil Science Society of America, R.B. Bryant, R.W. Arnold (Eds.); Peltoniemi, M., Mäkipää, R., Liski, J., Tamminen, P., Changes in soil carbon with stand age - an evaluation of a modeling method with empirical data (2004) Global Change Biol., 10, pp. 2078-2091; Peltoniemi, M., Thürig, E., Ogle, S.M., Palosuo, T., Shrumpf, M., Wützler, T., Butterbach-Bahl, K., Mäkipää, R., Models in country scale carbon accounting of forest soils (2007) Silva Fenn., 41, pp. 575-602; Ponce-Hernandez, R., Marriott, F.H.C., Beckett, P.H.T., An improved method for reconstructing a soil profile from analyses of a small number of samples (1986) J. Soil Sci., 37, pp. 455-467; Priestly, C.H.B., Taylor, R.J., On the assessment of surface heat flux and evaporation using large scale parameters (1972) Mon. Weather Rev., 100, pp. 81-92; Refsgaard, J.C., van der Sluijs, J.P., Brown, J., van der Keur, P., A framework for dealing with uncertainty due to model structure error (2006) Adv. Water Resour., 29, pp. 1586-1597; Repo, A., Tuomi, M., Liski, J., Indirect carbon dioxide emissions from producing bioenergy from forest harvest residues (2011) GCB Bioenergy, 3, pp. 107-115; Richards, L.A., Capillary conduction of liquids through porous mediums (1931) Physics, 1, pp. 318-333; Rolff, C., Ågren, G.I., Predicting effects of different harvesting intensities with a model of nitrogen limited forest growth (1999) Ecol. Model., 118, pp. 193-211; Rubatscher, D., Munk, K., Stöhr, D., Bahn, M., Mader-Oberhammer, M., Cernusca, A., Biomass expansion functions for Larix decidua: a contribution to the estimation of forest carbon stocks (2006) Austrian J. For. Sci., 123, pp. 87-101; Rumpel, C., Kögel-Knabner, I., Bruhn, F., Vertical distribution, age, and chemical composition of organic carbon in two forest soils of different pedogenesis (2002) Org. Geochem., 33, pp. 1131-1142; Schaldach, R., Alcamo, J., Coupled simulation of regional land use change and soil carbon sequestration: a case study for the state of Hesse in Germany (2006) Environ. Modell. Softw., 21, pp. 1430-1446; Scherrer, D., Koerner, C., Infra-red thermometry of alpine landscapes challenges climatic warming projections (2010) Global Change Biol., 16, pp. 2602-2613; Smith, P., Smith, J.U., Powlson, D.S., McGill, W.B., Arah, J.R.M., Chertov, O.G., Coleman, K., Jenkinson, D.S., A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments (1997) Geoderma, 81, pp. 153-225; Smith, P., Smith, J., Wattenbach, M., Meyer, J., Lindner, M., Zaehle, S., Hiederer, R., Kankaanpaa, S., Projected changes in mineral soil carbon of European forests, 1990-2100 (2006) Can. J. Soil Sci., 86, pp. 159-169; Statistics Finland Greenhouse Gas Emissions in Finland 1990-2008 (2010) National Inventory Report Under the UNFCCC and the Kyoto Protocol, p. 470. , http://tilastokeskus.fi/tup/khkinv/fin_nir_20100525.pdf; Sun, O.J., Campbell, J., Law, B.E., Wolf, V., Dynamics of carbon stocks in soils and detritus across chronosequences of different forest types in the Pacific Northwest, USA (2004) Global Change Biol., 10, pp. 1470-1481; Svensson, M., Jansson, P., Berggren Kleja, D., Modelling soil C sequestration in spruce forest ecosystems along a Swedish transect based on current conditions (2008) Biogeochemistry, 89, pp. 95-119; Thuille, A., Schulze, E.D., Carbon dynamics in successional and afforested spruce stands in Thuringia and the Alps (2006) Global Change Biol., 12, pp. 325-342; Tuomi, M., Thum, T., Järvinen, H., Fronzek, S., Berg, B., Harmon, M., Trofymow, J.A., Liski, J., Leaf litter decomposition-estimates of global variability based on Yasso07 model (2009) Ecol. Model., 220, pp. 3362-3371; Tuomi, M., Rasinmäki, J., Repo, A., Vanhala, P., Liski, J., Soil carbon model Yasso07 graphical user interface (2011) Environ. Model. Softw., 26, pp. 1358-1362; Tuomi, M., Vanhala, P., Karhu, K., Fritze, H., Liski, J., Heterotrophic soil respiration-comparison of different models describing its temperature dependence (2008) Ecol. Model., 211, pp. 182-190; (1992) UNFCCC United Nations Framework Convention on Climate Change, , UNFCCC Secretariat, Bonn, Germany; (1997) UNFCCC Kyoto Protocol, , UNFCCC Secretariat, Bonn, Germany; (2010) UNFCCC National Inventory Reports of Annex 1 Countries for the UNFCCC, , http://unfccc.int/national_reports/annex_i_ghg_inventories/national_inventories_submissions/items/5270.php, Website:; Walker, W.E., Harremoës, P., Rotmans, J., Van der Sluijs, J.P., Van Asselt, M.B.A., Janssen, P., Von Krauss, M.P.K., Defining uncertainty: a conceptual basis for uncertainty management in model-based decision support (2003) Integr. Assess., 4, pp. 5-17; Wirth, C., Schumacher, J., Schulze, E.D., Generic biomass functions for Norway spruce in central Europe - a meta-analysis approach towards prediction and uncertainty estimation (2004) Tree Physiol., 24, pp. 121-139; Wutzler, T., Reichstein, M., Soils apart from equilibrium - consequences for soil carbon balance modelling (2006) Biogeosci. Disc., 3, pp. 1679-1714; Yuan, Z.Y., Chen, H.Y.H., Fine root biomass, production, turnover rates, and nutrient contents in boreal forest ecosystems in relation to species, climate, fertility, and stand age: literature review and meta-analyses (2010) Crit. Rev. Plant Sci., 29, pp. 204-221; Zhang, Y., Li, C.S., Trettin, C.C., Li, H., Sun, G., An integrated model of soil, hydrology, and vegetation for carbon dynamics in wetland ecosystems. Global Biogeochem (2002) Cycles, 16

QC 20170407

Available from: 2017-03-22 Created: 2017-03-22 Last updated: 2017-04-07Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Svensson, Magnus
In the same journal
Environmental Modelling & Software
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 43 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf