Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Cellulose nanofibers enable paraffin encapsulation and the formation of stable thermal regulation nanocomposites
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.ORCID iD: 0000-0002-1591-5815
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.ORCID iD: 0000-0002-9663-7705
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.ORCID iD: 0000-0003-1161-9311
Show others and affiliations
2017 (English)In: Nano Energy, ISSN 2211-2855, Vol. 34, p. 541-548Article in journal (Refereed) Published
Abstract [en]

Non-leaking, green materials with high content of phase change materials (PCM) can conserve solar energy and contribute to a sustainable society. Here, paraffin was encapsulated by nanocellulose (CNF) through a pickering emulsion method, while simultaneously forming a composite material. The thermodynamic drive for phase separation was confirmed by molecular modeling. Particle formation was characterized by dynamic light scattering and they were processed into stable PCM/CNF composites in the form of PCM paper structures with favorable mechanical properties. The PCM composite was lightweight and showed a solid content of paraffin of more than 72 wt%. Morphology was characterized using FE-SEM. The thermal regulation function of the PCM composite was demonstrated in the form of a model roof under simulated sunlight. No obvious leakage was observed during heating/cooling cycles, as supported by DSC and SAXS data. The PCM composite can be extended to panels used in energy-efficient smart buildings with thermal regulation integrated in load-bearing structures.

Place, publisher, year, edition, pages
2017. Vol. 34, p. 541-548
Keywords [en]
Nanocellulose, Phase change materials, Encapsulation, Thermal regulation, Biocomposites
National Category
Materials Engineering
Identifiers
URN: urn:nbn:se:kth:diva-204014DOI: 10.1016/j.nanoen.2017.03.010ISI: 000400383300057Scopus ID: 2-s2.0-85015399594OAI: oai:DiVA.org:kth-204014DiVA, id: diva2:1083780
Funder
Knut and Alice Wallenberg Foundation
Note

QC 20170411

Available from: 2017-03-22 Created: 2017-03-22 Last updated: 2018-02-21Bibliographically approved
In thesis
1. Cellulose–Assisted Dispersion of Carbon Nanotubes: From Colloids to Composites
Open this publication in new window or tab >>Cellulose–Assisted Dispersion of Carbon Nanotubes: From Colloids to Composites
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

It is a challenge to disperse nanoparticles to obtain a nanostructured composite. This thesis aims at providing a new route to fabricate carbon nanotube (CNT) composites and suggests mechanisms for nanocellulose–CNT interactions. This route is based on unmodified CNT dispersed in water with the help of nanocellulose. Chemical functionalization of the CNTs and the addition of surfactants are avoided. Thus, the mechanical and electrical properties of such nanotube composites can be improved.

Cellulose derivatives can disperse and stabilize carbon nanotubes in water. Nanocellulose particles, such as cellulose nanofibrils (CNF), are a new form of cellulose derivatives that are able to disperse and stabilize untreated carbon nanotubes in water. The utilization of the hybrid CNF–CNT dispersions are shown to lead to strong nanostructured composites with high nanotube content and conductivity. The mechanism behind the dispersive action of nanocellulose for nanotubes is explored and studied in detail. The dispersive ability of the nanocellulose leads to improved properties of CNF–CNT composites.

Apart from studies of structure and properties of composite fibers and films, two different functional materials are studied in detail. One is to form conductive patterns on cellulose nanopaper for the stable function of printed electronics in various environmental conditions and during handling. The second is to use a water-soluble cellulosic polymer–nanotube dispersion to fabricate superelastic aerogels without any chemical crosslinking or the addition of another component. This makes the aerogels easily recyclable (redispersible in water) and opens a new route for recyclable superelastic CNT composite aerogels.

Abstract [sv]

Det är en utmaning att dispergera nanopartiklar för nanostrukturerade kompositer. Avhandlingen beskriver en ny väg för att framställa kompositer från kolnanorör (CNT) och föreslår mekanismer för växelverkan mellan CNT och CNF. Den nya vägen baseras sig på dispergering av CNT i vatten med hjälp av CNF. CNT behöver inte modifieras kemiskt eller med ytaktiva ämnen. Mekaniska och elektriska egenskaper hos materialen kan därför förbättras.

Cellulsosaderivat kan dispergera och stabilisera CNT i vatten. Nanocellulosa är en ny typ av derivat, i form av fibriller eller nanokristaller, som kan dispergera och stabilisera icke modifierade CNT i vatten. Dispersioner av CNF-CNT används för att framställa starka nanokompositer med hög CNT-halt och hög elektrisk ledningsförmåga. Dispergerings-mekanismen studeras och förklaras från experimentella data. Den dispergerande förmågan hos CNF leder till förbättrade egenskaper hos CNF-CNT-kompositer.

Struktur-egenskaps relationer för fibrer och filmer rapporteras. Två typer av funktionella material studeras i detalj. Ett av materialen består av ledande mönster av CNF-CNT på substrat av nanocellulosa. Det andra exemplet är superelastiska aerogeler utan kemisk tvärbindning. Aerogelerna kan återvinnas och öppnar möjligheter för superelastiska aerogeler.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2018. p. 55
Series
TRITA-CBH-FOU ; 2018:2
Keywords
Nanocelluloses, Carbon nanotubes, Composites, Colloids
National Category
Composite Science and Engineering Paper, Pulp and Fiber Technology Nano Technology
Research subject
Fibre and Polymer Science
Identifiers
urn:nbn:se:kth:diva-223453 (URN)978-91-7729-685-0 (ISBN)
Public defence
2018-03-14, F3, Lindstedtsvägen 26, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20180221

Available from: 2018-02-21 Created: 2018-02-21 Last updated: 2018-03-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Li, YuanyuanYu, ShunChen, PanRojas, RamiroHajian, AlirezaBerglund, Lars
By organisation
Fibre and Polymer TechnologyWallenberg Wood Science Center
Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 890 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf