Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Climate impact assessment of willow energy from a landscape perspective: A Swedish case study
KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Industrial Ecology.ORCID iD: 0000-0001-5979-9521
2016 (English)In: Global Change Biology Bioenergy, ISSN 1757-1693, E-ISSN 1757-1707Article in journal (Refereed) Published
Abstract [en]

Locally produced bioenergy can decrease the dependency on imported fossil fuels in a region, while also being valuable for climate change mitigation. Short-rotation coppice willow is a potentially high-yielding energy crop that can be grown to supply a local energy facility. This study assessed the energy performance and climate impacts when establishing willow on current fallow land in a Swedish region with the purpose of supplying a bio-based combined heat and power plant. Time-dependent life cycle assessment (LCA) was combined with geographic information system (GIS) mapping to include spatial variation in terms of transport distance, initial soil organic carbon content, soil texture and yield. Two climate metrics were used [global warming potential (GWP) and absolute global temperature change potential (AGTP)], and the energy performance was determined by calculating the energy ratio (energy produced per unit of energy used). The results showed that when current fallow land in a Swedish region was used for willow energy, an average energy ratio of 30 MJ MJ-1 (including heat, power and flue gas condensation) was obtained and on average 84.3 Mg carbon per ha was sequestered in the soil during a 100-year time frame (compared with the reference land use). The processes contributing most to the energy use during one willow rotation were the production and application of fertilizers (~40%), followed by harvest (~35%) and transport (~20%). The temperature response after 100 years of willow cultivation was -6·10-16K MJ-1 heat, which is much lower compared with fossil coal and natural gas (70·10-16K MJ-1 heat and 35·10-16 K MJ-1 heat, respectively). The combined GIS and time-dependent LCA approach developed here can be a useful tool in systematic analysis of bioenergy production systems and related land use effects. © 2016 John Wiley & Sons Ltd.

Place, publisher, year, edition, pages
John Wiley & Sons, 2016.
Keyword [en]
Bioenergy, Geographic information system, Global warming, Land use, Life cycle assessment, Salix, Soil organic carbon, Spatial variation
National Category
Renewable Bioenergy Research
Identifiers
URN: urn:nbn:se:kth:diva-203882DOI: 10.1111/gcbb.12399ScopusID: 2-s2.0-84987606145OAI: oai:DiVA.org:kth-203882DiVA: diva2:1084638
Note

QC 20170411

Available from: 2017-03-26 Created: 2017-03-26 Last updated: 2017-04-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Sundberg, Cecilia
By organisation
Industrial Ecology
In the same journal
Global Change Biology Bioenergy
Renewable Bioenergy Research

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 6 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf