Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Comparative analysis of sterol acquisition in the oomycetes Saprolegnia parasitica and Phytophthora infestans
KTH, School of Biotechnology (BIO), Glycoscience.
KTH, School of Biotechnology (BIO), Glycoscience.ORCID iD: 0000-0003-1877-4154
KTH, School of Biotechnology (BIO), Glycoscience.
KTH, School of Biotechnology (BIO), Glycoscience.ORCID iD: 0000-0002-3372-8773
Show others and affiliations
2017 (English)In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 12, no 2, e0170873Article in journal (Refereed) Published
Abstract [en]

The oomycete class includes pathogens of animals and plants which are responsible for some of the most significant global losses in agriculture and aquaculture. There is a need to replace traditional chemical means of controlling oomycete growth with more targeted approaches, and the inhibition of sterol synthesis is one promising area. To better direct these efforts, we have studied sterol acquisition in two model organisms: the sterol-autotrophic Saprolegnia parasitica, and the sterol-heterotrophic Phytophthora infestans. We first present a comprehensive reconstruction of a likely sterol synthesis pathway for S. parasitica, causative agent of the disease saprolegniasis in fish. This pathway shows multiple potential routes of sterol synthesis, and draws on several avenues of new evidence: bioinformatic mining for genes with sterol-related functions, expression analysis of these genes, and analysis of the sterol profiles in mycelium grown in different media. Additionally, we explore the extent to which P. infestans, which causes the late blight in potato, can modify exogenously provided sterols. We consider whether the two very different approaches to sterol acquisition taken by these pathogens represent any specific survival advantages or potential drug targets.

Place, publisher, year, edition, pages
PUBLIC LIBRARY SCIENCE , 2017. Vol. 12, no 2, e0170873
National Category
Biological Sciences
Identifiers
URN: urn:nbn:se:kth:diva-204090DOI: 10.1371/journal.pone.0170873ISI: 000396161200053ScopusID: 2-s2.0-85011382600OAI: oai:DiVA.org:kth-204090DiVA: diva2:1085436
Note

QC 20170329

Available from: 2017-03-29 Created: 2017-03-29 Last updated: 2017-03-29Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Dahlin, PaulSrivastava, VaibhavEkengren, SophiaMcKee, Lauren S.Bulone, Vincent
By organisation
Glycoscience
In the same journal
PLoS ONE
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 1 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf