Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Long-range mutual synchronization of spin Hall nano-oscillators
Show others and affiliations
2017 (English)In: Nature Physics, ISSN 1745-2473, E-ISSN 1745-2481, Vol. 13, no 3, 292-+ p.Article in journal (Refereed) Published
Abstract [en]

The spin Hall effect in a non-magnetic metal with spin-orbit coupling injects transverse spin currents into adjacent magnetic layers, where the resulting spin transfer torque can drive spin wave auto-oscillations. Such spin Hall nano-oscillators (SHNOs) hold great promise as extremely compact and broadband microwave signal generators and magnonic spin wave injectors. Here we show that SHNOs can also be mutually synchronized with unprecedented efficiency. We demonstrate mutual synchronization of up to nine individual SHNOs, each separated by 300 nm. Through further tailoring of the connection regions we can extend the synchronization range to 4 mu m. The mutual synchronization is observed electrically as an increase in the power and coherence of the microwave signal, and confirmed optically using micro-Brillouin light scattering microscopy as two spin wave regions sharing the same spectral content, in agreement with our micromagnetic simulations.

Place, publisher, year, edition, pages
Nature Publishing Group, 2017. Vol. 13, no 3, 292-+ p.
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-204074DOI: 10.1038/NPHYS3927ISI: 000395814000023Scopus ID: 2-s2.0-84995387907OAI: oai:DiVA.org:kth-204074DiVA: diva2:1085500
Note

QC 20170329

Available from: 2017-03-29 Created: 2017-03-29 Last updated: 2017-03-29Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Åkerman, Johan
By organisation
Material Physics, MF
In the same journal
Nature Physics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 17 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf