Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Approximation of Markov Processes by Lower Dimensional Processes via Total Variation Metrics
Show others and affiliations
2017 (English)In: IEEE Transactions on Automatic Control, ISSN 0018-9286, E-ISSN 1558-2523, Vol. 62, no 3, 1030-1045 p.Article in journal (Refereed) Published
Abstract [en]

The aim of this paper is to approximate a Finite-State Markov (FSM) process by another process defined on a lower dimensional state space, called the approximating process, with respect to a total variation distance fidelity criterion. The approximation problem is formulated as an optimization problem using two different approaches. The first approach is based on approximating the transition probability matrix of the FSM process by a lower-dimensional transition probability matrix, resulting in an approximating process which is a Finite-State Hidden Markov (FSHM) process. The second approach is based on approximating the invariant probability vector of the original FSM process by another invariant probability vector defined on a lower-dimensional state space. Going a step further, a method is proposed based on optimizing a Kullback-Leibler divergence to approximate the FSHM processes by FSM processes. The solutions of these optimization problems are described by optimal partition functions which aggregate the states of the FSM process via a corresponding water-filling solution, resulting in lower-dimensional approximating processes which are FSHM or FSM processes. Throughout the paper, the theoretical results are justified by illustrative examples that demonstrate our proposed methodology.

Place, publisher, year, edition, pages
IEEE Press, 2017. Vol. 62, no 3, 1030-1045 p.
Keyword [en]
Approximating process, Markov process, total variation distance, water-filling
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-204056DOI: 10.1109/TAC.2016.2578299ISI: 000395924300002Scopus ID: 2-s2.0-85015093466OAI: oai:DiVA.org:kth-204056DiVA: diva2:1085741
Note

QC 20170330

Available from: 2017-03-30 Created: 2017-03-30 Last updated: 2017-03-30Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Johansson, Mikael
By organisation
Automatic Control
In the same journal
IEEE Transactions on Automatic Control
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 6 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf