Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Adaptive setup planning of prismatic parts for machine tools with varying configurations
2008 (English)In: International Journal of Production Research, ISSN 0020-7543, E-ISSN 1366-588X, Vol. 46, no 3, p. 571-594Article in journal (Refereed) Published
Abstract [en]

Setup planning for machining a part is to determine the number and sequence of setups (including machining features grouping in setups) and the part orientation of each setup. Tool accessibility plays a key role in this process. An adaptive setup planning approach for various multi-axis machine tools is proposed in this paper focusing on kinematic analysis of tool accessibility and optimal setup plan selection. In our approach, feasible Tool Access Directions (TADs) of machining features are denoted by partially sequenced unit vectors; The Tool Orientation Spaces (TOS) of different multi-axis machine tools are generated according to their configurations through a kinematic model, and represented on a unit spherical surface. Starting from a 3-axis-based machining feature grouping, all possible setup plans of a given part for different types of machine tools (3-axis, 3-axis with an indexing table, 4-axis, and 5-axis machines) can be achieved effectively by tool accessibility examination. The optimal setup plans are selected from obtained candidates by evaluating both their locating and grouping factors. A so-generated setup plan can provide not only the best coverage of machining features and the primary locating directions but the optimal orientations of the work-piece for each setup. Only prismatic parts are considered in this proof-of-concept study, and the algorithms introduced in this paper are implemented in MATLAB. A case study is conducted to validate the algorithms.

Setup planning for machining a part is to determine the number and sequence of setups (including machining features grouping in setups) and the part orientation of each setup. Tool accessibility plays a key role in this process. An adaptive setup planning approach for various multi-axis machine tools is proposed in this paper focusing on kinematic analysis of tool accessibility and optimal setup plan selection. In our approach, feasible Tool Access Directions (TADs) of machining features are denoted by partially sequenced unit vectors; The Tool Orientation Spaces (TOS) of different multi-axis machine tools are generated according to their configurations through a kinematic model, and represented on a unit spherical surface. Starting from a 3-axis-based machining feature grouping, all possible setup plans of a given part for different types of machine tools (3-axis, 3-axis with an indexing table, 4-axis, and 5-axis machines) can be achieved effectively by tool accessibility examination. The optimal setup plans are selected from obtained candidates by evaluating both their locating and grouping factors. A so-generated setup plan can provide not only the best coverage of machining features and the primary locating directions but the optimal orientations of the work-piece for each setup. Only prismatic parts are considered in this proof-of-concept study, and the algorithms introduced in this paper are implemented in MATLAB. A case study is conducted to validate the algorithms.

Place, publisher, year, edition, pages
Taylor & Francis, 2008. Vol. 46, no 3, p. 571-594
Keyword [en]
Setup planning, Tool access direction, Tool orientation space, Multi-axis machine tools, Machining features
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:kth:diva-205711DOI: 10.1080/00207540600849125ISI: 000252337700002Scopus ID: 2-s2.0-36249009507OAI: oai:DiVA.org:kth-205711DiVA, id: diva2:1090217
Note

QC 20170424

Available from: 2017-04-23 Created: 2017-04-23 Last updated: 2017-09-04Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Wang, Lihui
In the same journal
International Journal of Production Research
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 9 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf