Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Vanadate complexation to ferrihydrite: X-ray absorption spectroscopy and CD-MUSIC modelling
KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering. Swedish University of Agricultural Sciences, Sweden.
2017 (English)In: Environmental Chemistry, ISSN 1448-2517, E-ISSN 1449-8979, Vol. 14, no 3, 141-150 p.Article in journal (Refereed) Published
Abstract [en]

The mobility of vanadium in the environment is influenced by sorption to metal (hydr)oxides, especially those containing iron. The aim of this study is to understand the adsorption behaviour of vanadium on poorly ordered (two-line) ferrihydrite (Fh). A further objective was to determine the binding mechanism of vanadate(V) to ferrihydrite surfaces in aqueous suspension to constrain the CD-MUSIC surface complexation model. Vanadium adsorption to ferrihydrite was evaluated by batch experiments which included series with different Fh-to-V ratios and pH values. Vanadate(V) adsorption was also evaluated in the presence of phosphate to compete with vanadate(V) for the available surface sites on ferrihydrite. In agreement with earlier studies, vanadate(V) was strongly adsorbed to ferrihydrite and the adsorption increased with decreasing pH. In the presence of phosphate, less vanadate(V) was adsorbed. Analysis by X-ray absorption near-edge structure spectroscopy revealed that the adsorbed vanadium was tetrahedral vanadate(V), VO4, regardless of whether vanadate(V) or vanadyl(IV) was added to the system. Spectra collected by extended X-ray absorption fine structure spectroscopy showed that vanadate(V) is bound primarily as an edge-sharing bidentate complex with VFe distances around 2.8 angstrom. Based on this information, a surface complexation model was set up in which three bidentate vanadate(V) complexes with different degrees of protonation were included. The model provided a satisfactory description of vanadate(V) adsorption over most of the pH and concentration ranges studied, also in the presence of competing phosphate ions.

Place, publisher, year, edition, pages
CSIRO PUBLISHING , 2017. Vol. 14, no 3, 141-150 p.
National Category
Environmental Sciences Chemical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-206307DOI: 10.1071/EN16174ISI: 000398536500002ScopusID: 2-s2.0-85016749607OAI: oai:DiVA.org:kth-206307DiVA: diva2:1093383
Note

QC 20170505

Available from: 2017-05-05 Created: 2017-05-05 Last updated: 2017-05-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Gustafsson, Jon Petter
By organisation
Sustainable development, Environmental science and Engineering
In the same journal
Environmental Chemistry
Environmental SciencesChemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 6 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf