Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A High-Efficiency Energy Harvesting Interface for Implanted Biofuel Cell and Thermal Harvesters
KTH, School of Information and Communication Technology (ICT), Integrated Devices and Circuits. (Integrated Circuits and Systems)ORCID iD: 0000-0002-2684-0724
KTH, School of Information and Communication Technology (ICT), Electronics, Integrated devices and circuits. (Integrated Circuits and Systems)
KTH, Superseded Departments, Electronic Systems Design. (Integrated Circuits and Systems)ORCID iD: 0000-0003-3802-7834
(English)In: IEEE transactions on power electronics, ISSN 0885-8993, E-ISSN 1941-0107Article in journal (Refereed) Submitted
Abstract [en]

A dual-source energy harvesting interface that combines energy from implanted glucose biofuel cell and thermoelectric generator is presented. A single-inductor dual-input dual-output boost converter topology is employed to efficiently transfer the extracted power to the output. A dual-input feature enables the simultaneous maximum power extraction from two harvesters, while a dual-output allows a control circuit to perform complex digital functions at nW power levels. The control circuit reconfigures the converter to improve the efficiency and achieve zero-current and zero-voltage switching. The measurement results of the proposed boost converter, implemented in a 0.18 μm CMOS process, show a peak efficiency of 89.5% when both sources provide a combined input power of 66 μW. In the single-source mode, the converter achieves a peak efficiency of 85.2% at 23 μW for the thermoelectric source and 90.4% at 29 μW for the glucose biofuel cell. The converter can operate from minimum input voltages of 10 mV for the thermoelectric source and 30 mV for the glucose biofuel cell. 

Keyword [en]
Energy harvesting, DC-DC power conversion, CMOS integrated circuits, thermoelectric energy conversion, fuel cells
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-206586OAI: oai:DiVA.org:kth-206586DiVA: diva2:1093419
Projects
Mi-SoC
Funder
Swedish Research Council
Note

QC 20170508

Available from: 2017-05-05 Created: 2017-05-05 Last updated: 2017-05-08Bibliographically approved
In thesis
1. Highly-Efficient Energy Harvesting Interfaces for Implantable Biosensors
Open this publication in new window or tab >>Highly-Efficient Energy Harvesting Interfaces for Implantable Biosensors
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Energy harvesting is identified as an alternative solution for powering implantable biosensors. It can potentially enable the development of self-powered implants if the harvested energy is properly handled. This development implies that batteries, which impose many limitations, are replaced by miniature harvesting devices. Customized interface circuits are necessary to correct for differences in the voltage and power levels provided by harvesting devices from one side, and required by biosensor circuits from another. This thesis investigates the available harvesting sources within the human body, proposes various methods and techniques for designing power-efficient interfaces, and presents two CMOS implementations of such interfaces.

Based on the investigation of suitable sources, this thesis focuses on glucose biofuel cells and thermoelectric harvesters, which provide appropriate performance in terms of power density and lifetime. In order to maximize the efficiency of the power transfer, this thesis undertakes the following steps. First, it performs a detailed analysis of all potential losses within the converter. Second, in relation to the performed analysis, it proposes a design methodology that aims to minimize the sum of losses and the power consumption of the control circuit. Finally, it presents multiple design techniques to further improve the overall efficiency.

The combination of the proposed methods and techniques are validated by two highly efficient energy harvesting interfaces. The first implementation, a thermoelectric energy harvesting interface, is based on a single-inductor dual-output boost converter. The measurement results show that it achieves a peak efficiency of 86.6% at 30 μW. The second implementation combines the energy from two sources, glucose biofuel cell and thermoelectric harvester, to accomplish reliable multi-source harvesting. The measurements show that it achieves a peak efficiency of 89.5% when the combined input power is 66 μW. 

Abstract [sv]

Energiskörd har identifierats som en alternativ lösning för att driva inplanterbara biosensorer. Det kan potentiellt möjliggöra utveckling av själv-drivna inplanterbara biosensorer. Denna utveckling innebär att batterier, som sätter många begränsningar, ersätts av miniatyriserade energiskördsenheter. Anpassade gränssnittskretsar är nödvändiga för att korrigera för de skillnader i spänning och effektnivå som produceras av de energialstrande enheterna, och de som krävs av biosensorkretsarna. Denna avhandling undersöker de tillgängliga källorna för energiskörd i den mänskliga kroppen, föreslår olika metoder och tekniker för att utforma effektsnåla gränssnitt och presenterar två CMOS-implementeringar av sådana gränssnitt.

Baserat på undersökningen av lämpliga energiskördskällor, fokuserar denna avhandling på glukosbiobränsleceller och termoelektriska energiskördare, som har lämpliga prestanda i termer av effektdensitet och livstid. För att maximera effektiviteten hos effektöverföringen innehåller denna avhandling följande steg. Först görs en detaljerad analys av alla potentiella förluster inom boost-omvandlare. Sedan föreslår denna avhandling en designmetodik som syftar till att maximera den totala effektiviteten och effektförbrukningen. Slutligen presenterar den flera designtekniker för att ytterligare förbättra den totala effektiviteten.

Kombinationen av de föreslagna metoderna och teknikerna är varierade genom två högeffektiva lågeffekts energigränssnittskretsar. Den första inplementeringen är ett termoelektriskt energiskördsgränssnitt baserat på en induktor, med dubbla utgångsomvandlare. Mätresultaten visar att omvandlaren uppnår en maximal effektivitet av 86.6% vid 30 μW. Det andra genomförandet kombinerar energin från två källor, en glukosbiobränslecell och en termoskördare, för att åstadkomma en tillförlitlig multi-källas energiskördslösning. Mätresultaten visar att omvandlaren uppnår en maximal effektivitet av 89.5% när den kombinerade ineffekten är 66 μW. 

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2017. 84 p.
Keyword
Energy harvesting interface, thermoelectric generator, glucose biofuel cell, power management, dc-dc converter, boost converter, zero-current switching, zero-voltage switching, implantable biosensor, Energiskördsgränssnitt, termoelektrisk generator, glukosbiobränslecell, energihantering, DC-DC-omvandlare, boost-omvandlare, inplanterbar biosensor
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Information and Communication Technology
Identifiers
urn:nbn:se:kth:diva-206588 (URN)978-91-7729-370-5 (ISBN)
Public defence
2017-06-09, Ka-Sal B (Sal Peter Weissglas), Kistagången 16, Stockholm, 13:00 (English)
Opponent
Supervisors
Projects
Mi-SoC
Funder
Swedish Research Council
Note

QC 20170508

Available from: 2017-05-08 Created: 2017-05-05 Last updated: 2017-05-09Bibliographically approved

Open Access in DiVA

EH_MS_JK(1943 kB)15 downloads
File information
File name FULLTEXT01.pdfFile size 1943 kBChecksum SHA-512
8fa871cdec09a3830dee3b34256c495a065b2f519d518d7c99a2d5e5516efbef5faf0195a71494dea2972ddc9f0025057a950abc18c54956738acfb000654e06
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Katic, JankoRusu, Ana
By organisation
Integrated Devices and CircuitsIntegrated devices and circuitsElectronic Systems Design
In the same journal
IEEE transactions on power electronics
Other Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 15 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 72 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf