Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Theoretical investigation of regioselectivity in electrophilic aromatic nitration
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.ORCID iD: 0000-0003-3832-2331
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.ORCID iD: 0000-0003-2673-075X
(English)Manuscript (preprint) (Other academic)
Abstract [en]

The potential energy surfaces in gas phase and in aqueous solution for the nitration of benzene, chlorobenzene and phenol have been elucidated with density functional theory at the M06-2X/6-311G(d,p) level combined with the polarizable continuum solvent model (PCM). Three reaction intermediates have been identified along both surfaces: the unoriented π-complex (I), the oriented reaction complex (II) and the σ-complex (III). In order to obtain quantitatively reliable results for positional selectivity and for modeling the expulsion of the proton, it is crucial to take solvent effects into consideration. The results are in agreement with Olah´s conclusion from over 40 years ago that the transition state leading to (II) is the rate-determining step in activated cases, while it is the one leading to (III) for deactivated cases. The simplified reactivity approach of using the free energy for the formation of (III) as a model of the ratedetermining transition state, has previously been shown to be very successful for halogenations, but problematic for nitrations. These observations are rationalized with the geometric and energetic resemblance, and lack of resemblance respectively, between (III) and the corresponding rate determining transition state. At this level of theory, neither the σ-complex (III) nor the reaction complex (II) can be used to accurately model the rate-determining transition state for nitrations.

National Category
Physical Chemistry
Research subject
Theoretical Chemistry and Biology
Identifiers
URN: urn:nbn:se:kth:diva-206952OAI: oai:DiVA.org:kth-206952DiVA, id: diva2:1094558
Note

QC 20170510

Available from: 2017-05-10 Created: 2017-05-10 Last updated: 2017-05-17Bibliographically approved
In thesis
1. Quantum Chemical Studies of Aromatic Substitution Reactions
Open this publication in new window or tab >>Quantum Chemical Studies of Aromatic Substitution Reactions
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In this thesis, density functional theory (DFT) is used to investigate the mechanisms and reactivities of electrophilic and nucleophilic aromatic substitution reactions (SEAr and SNAr respectively). For SEAr, the σ-complex intermediate is preceded by one (halogenation) or two (nitration) π-complex intermediates. Whereas the rate-determining transition state (TS) for nitration resembles the second π-complex, the corresponding chlorination TS is much closer to the σ-complex. The last step, the expulsion of the proton, is modeled with an explicit solvent molecule in combination with PCM and confirmed to be a nearly barrierless process for nitration/chlorination and involves a substantial energy barrier for iodination. It is also shown for nitration that the gas phase structures and energetics are very different from those in polar solvent. The potential energy surface for SNAr reactions differs greatly depending on leaving group; the σ-complex intermediate exist for F-/HF, but for Cl-/HCl or Br-/HBr the calculations indicate a concerted mechanism. These mechanistic results form a basis for the investigations of predictive reactivity models for aromatic substitution reactions. For SEAr reactions, the free energy of the rate-determining TS reproduces both local (regioselectivity) and global reactivity (substrate selectivity) with good to excellent accuracy. For SNAr reactions good accuracies are obtained for Cl-/HCl or Br-/HBr as leaving group, using TS structures representing a one-step concerted mechanism. The σ-complex intermediate can be used as a reactivity indicator for the TS energy, and for SEAr the accuracy of this method varies in a way that can be rationalized with the Hammond postulate. It is more accurate the later the rate-determining TS, that is the more deactivated the reaction. For SNAr reactions with F-/HF as leaving group, the same method gives excellent accuracy for both local and global reactivity irrespective of the degree of activation.

Place, publisher, year, edition, pages
Stockholm: Universitetsservice US AB, Stockholm, 2017. p. 74
Series
TRITA-CHE-Report, ISSN 1654-1081
National Category
Physical Chemistry
Research subject
Theoretical Chemistry and Biology
Identifiers
urn:nbn:se:kth:diva-206964 (URN)978-91-7729-324-8 (ISBN)
Public defence
2017-06-07, Sal F3, Lindstedtsvägen 26, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

QC 20170510

Available from: 2017-05-10 Created: 2017-05-10 Last updated: 2017-05-10Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records BETA

Halldin Stenlid, JoakimBrinck, Tore

Search in DiVA

By author/editor
Liljenberg, MagnusHalldin Stenlid, JoakimBrinck, Tore
By organisation
Applied Physical Chemistry
Physical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 268 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf