Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Translational Entropy and Dispersion Energy Jointly Drive the Adsorption of Urea to Cellulose
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.ORCID iD: 0000-0001-6732-2571
Show others and affiliations
2017 (English)In: Journal of Physical Chemistry B, ISSN 1520-6106, E-ISSN 1520-5207, Vol. 121, no 10, p. 2244-2251Article in journal (Refereed) Published
Abstract [en]

The adsorption of urea on cellulose at room temperature has been studied using adsorption isotherm experiments and molecular dynamics (MD) simulations. The immersion of cotton cellulose into bulk urea solutions with concentrations between 0.01 and 0.30 g/mL led to a decrease in urea concentration in all solutions, allowing the adsorption of urea on the cellulose surface to be measured quantitatively. MD simulations suggest that urea molecules form sorption layers on both hydrophobic and hydrophilic surfaces. Although electrostatic interactions accounted for the majority of the calculated interaction energy between urea and cellulose, dispersion interactions were revealed to be the key driving force for the accumulation of urea around cellulose. The preferred orientation of urea and water molecules in the first solvation shell varied depending on the nature of the cellulose surface, but urea molecules were systematically oriented parallel to the hydrophobic plane of cellulose. The translational entropies of urea and water molecules, calculated from the velocity spectrum of the trajectory, are lower near the cellulose surface than in bulk. As urea molecules adsorb on cellulose and expel surface water into the bulk, the increase in the translational entropy of the water compensated for the decrease in the entropy of urea, resulting in a total entropy gain of the solvent system. Therefore, the cellulose urea dispersion energy and the translational entropy gain of water are the main factors that drive the adsorption of urea on cellulose.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2017. Vol. 121, no 10, p. 2244-2251
National Category
Physical Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-205422DOI: 10.1021/acs.jpcb.6b11914ISI: 000396969700004PubMedID: 28221796Scopus ID: 2-s2.0-85015375788OAI: oai:DiVA.org:kth-205422DiVA, id: diva2:1097237
Note

QC 20170522

Available from: 2017-05-22 Created: 2017-05-22 Last updated: 2017-11-10Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records BETA

Wohlert, Jakob

Search in DiVA

By author/editor
Chen, PanWohlert, Jakob
By organisation
Fibre and Polymer TechnologyWallenberg Wood Science Center
In the same journal
Journal of Physical Chemistry B
Physical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 65 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf