Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Aggregation-controlled photochromism based on a dithienylethene derivative with aggregation-induced emission
KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.ORCID iD: 0000-0001-6508-8355
2017 (English)In: Journal of Materials Chemistry C, ISSN 2050-7526, E-ISSN 2050-7534, Vol. 5, no 10, p. 2717-2722Article in journal (Refereed) Published
Abstract [en]

We report novel aggregation-induced emission (AIE) characteristics involving aggregation-controlled photochromism properties of a dithienylethene derivative, BTE-EQ, where two quinolinemalononitrile (EQ) units are covalently attached to a dithienylethene core. The typical AIE effect of BTE-EQ has been found to originate from the AIE character of the EQ units with respect to the reference compound BTE, which does not contain an EQ unit. The photochromism study, together with density functional theory calculations, reveals that the photochromic activity of BTE-EQ can be reversibly switched off and on by controlling the aggregation state during the AIE process, which provides a novel route to controlling the photochromism of diarylethenes.

Place, publisher, year, edition, pages
Royal Society of Chemistry , 2017. Vol. 5, no 10, p. 2717-2722
Keywords [en]
Density functional theory, Photochromism, Aggregation state, Aggregation-induced emissions, Diarylethenes, Dithienylethene, Novel route, Reference compounds, Agglomeration
National Category
Chemical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-207440DOI: 10.1039/C7TC00023EISI: 000396293400028Scopus ID: 2-s2.0-85014897544OAI: oai:DiVA.org:kth-207440DiVA, id: diva2:1098102
Note

Funding details: PCSIRT_IRT_16R49, MOE, Ministry of Education; Funding details: NSFC, National Natural Science Foundation of China; Funding text: This work was supported by the National key Research and Development Program (No. 2016YFA0200300), NSFC for Creative Research Groups (21421004) and Distinguished Young Scholars (21325625), NSFC/China, Ministry of Education of China (PCSIRT_IRT_16R49), Shanghai Sci. & Tech. and Edu. Committee (14YF1409200 and 15XD1501400), the Oriental Scholarship, Programme of Introducing Talents of Discipline to Universities (B16017), and the Fundamental Research Funds for the Central Universities (WJ1416005). We also thank the Swedish National Infrastructure for Computing (SNIC) for providing computational resources for project SNIC 2015-16/10.

QC 20170523

Available from: 2017-05-23 Created: 2017-05-23 Last updated: 2017-05-23Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Li, Xin

Search in DiVA

By author/editor
Li, Xin
By organisation
Theoretical Chemistry and Biology
In the same journal
Journal of Materials Chemistry C
Chemical Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 29 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf