Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Sequence memory with dynamical synapses
KTH, Superseded Departments, Numerical Analysis and Computer Science, NADA.
KTH, Superseded Departments, Numerical Analysis and Computer Science, NADA.ORCID iD: 0000-0002-2358-7815
2004 (English)In: Neurocomputing, ISSN 0925-2312, E-ISSN 1872-8286, Vol. 58-60, 271-278 p.Article in journal (Refereed) Published
Abstract [en]

We present an attractor model of cortical memory, capable of sequence learning. The network incorporates a dynamical synapse model and is trained using a Hebbian learning rule that operates by redistribution of synaptic efficacy. It performs sequential recall or unordered recall depending on parameters. The model reproduces data from free recall experiments in humans. Memory capacity scales with network size, storing sequences at about 0.18 bits per synapse.

Place, publisher, year, edition, pages
2004. Vol. 58-60, 271-278 p.
Keyword [en]
sequence learning, free recall, dynamical synapses, synaptic depression, attractor memory
National Category
Computer Science
Identifiers
URN: urn:nbn:se:kth:diva-6307DOI: 10.1016/j.neucom.2004.01.055ISI: 000222245900043Scopus ID: 2-s2.0-2542437082OAI: oai:DiVA.org:kth-6307DiVA: diva2:10986
Note
QC 20100916. 12th Annual Computational Neuroscience Meeting (CSN 03). Alicante, SPAIN. JUL 05-09, 2003 Available from: 2006-11-01 Created: 2006-11-01 Last updated: 2017-12-14Bibliographically approved
In thesis
1. Aspects of memory and representation in cortical computation
Open this publication in new window or tab >>Aspects of memory and representation in cortical computation
2006 (English)Doctoral thesis, comprehensive summary (Other scientific)
Abstract [sv]

Denna avhandling i datalogi föreslår modeller för hur vissa beräkningsmässiga uppgifter kan utföras av hjärnbarken. Utgångspunkten är dels kända fakta om hur en area i hjärnbarken är uppbyggd och fungerar, dels etablerade modellklasser inom beräkningsneurobiologi, såsom attraktorminnen och system för gles kodning. Ett neuralt nätverk som producerar en effektiv gles kod i binär mening för sensoriska, särskilt visuella, intryck presenteras. Jag visar att detta nätverk, när det har tränats med naturliga bilder, reproducerar vissa egenskaper (receptiva fält) hos nervceller i lager IV i den primära synbarken och att de koder som det producerar är lämpliga för lagring i associativa minnesmodeller. Vidare visar jag hur ett enkelt autoassociativt minne kan modifieras till att fungera som ett generellt sekvenslärande system genom att utrustas med synapsdynamik. Jag undersöker hur ett abstrakt attraktorminnessystem kan implementeras i en detaljerad modell baserad på data om hjärnbarken. Denna modell kan sedan analyseras med verktyg som simulerar experiment som kan utföras på en riktig hjärnbark. Hypotesen att hjärnbarken till avsevärd del fungerar som ett attraktorminne undersöks och visar sig leda till prediktioner för dess kopplingsstruktur. Jag diskuterar också metodologiska aspekter på beräkningsneurobiologin idag.

Abstract [en]

In this thesis I take a modular approach to cortical function. I investigate how the cerebral cortex may realise a number of basic computational tasks, within the framework of its generic architecture. I present novel mechanisms for certain assumed computational capabilities of the cerebral cortex, building on the established notions of attractor memory and sparse coding. A sparse binary coding network for generating efficient representations of sensory input is presented. It is demonstrated that this network model well reproduces the simple cell receptive field shapes seen in the primary visual cortex and that its representations are efficient with respect to storage in associative memory. I show how an autoassociative memory, augmented with dynamical synapses, can function as a general sequence learning network. I demonstrate how an abstract attractor memory system may be realised on the microcircuit level -- and how it may be analysed using tools similar to those used experimentally. I outline some predictions from the hypothesis that the macroscopic connectivity of the cortex is optimised for attractor memory function. I also discuss methodological aspects of modelling in computational neuroscience.

Place, publisher, year, edition, pages
Stockholm: KTH, 2006. xiv, 99 p.
Series
Trita-NA, ISSN 0348-2952 ; 2006:17
Keyword
cerebral cortex, neural networks, attractor memory, sequence learning, biological vision, generative models, serial order, computational neuroscience, dynamical synapses
National Category
Computer Science
Identifiers
urn:nbn:se:kth:diva-4161 (URN)91-7178-478-0 (ISBN)
Public defence
2006-11-13, F3, KTH, Lindstedtsvägen 26, Stockholm, 14:15
Opponent
Supervisors
Note
QC 20100916Available from: 2006-11-01 Created: 2006-11-01 Last updated: 2010-09-16Bibliographically approved
2. Some computational aspects of attractor memory
Open this publication in new window or tab >>Some computational aspects of attractor memory
2005 (English)Licentiate thesis, comprehensive summary (Other scientific)
Abstract [en]

In this thesis I present novel mechanisms for certain computational capabilities of the cerebral cortex, building on the established notion of attractor memory. A sparse binary coding network for generating efficient representation of sensory input is presented. It is demonstrated that this network model well reproduces receptive field shapes seen in primary visual cortex and that its representations are efficient with respect to storage in associative memory. I show how an autoassociative memory, augmented with dynamical synapses, can function as a general sequence learning network. I demonstrate how an abstract attractor memory system may be realized on the microcircuit level -- and how it may be analyzed using similar tools as used experimentally. I demonstrate some predictions from the hypothesis that the macroscopic connectivity of the cortex is optimized for attractor memory function. I also discuss methodological aspects of modelling in computational neuroscience.

Place, publisher, year, edition, pages
Stockholm: KTH, 2005. viii, 76 p.
Series
Trita-NA, ISSN 0348-2952 ; 0509
Keyword
Datalogi, attractor memory, cerebral cortex, neural networks, Datalogi
National Category
Computer Science
Identifiers
urn:nbn:se:kth:diva-249 (URN)91-7283-983-X (ISBN)
Presentation
2005-03-15, Sal E32, KTH, Lindstedtsvägen 3, Stockholm, 07:00
Opponent
Supervisors
Note
QC 20101220Available from: 2005-05-31 Created: 2005-05-31 Last updated: 2010-12-20Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Rehn, MartinLansner, Anders
By organisation
Numerical Analysis and Computer Science, NADA
In the same journal
Neurocomputing
Computer Science

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 101 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf