Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Excitonic gap formation in pumped Dirac materials
KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
2017 (English)In: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 95, no 20, article id 205410Article in journal (Refereed) Published
Abstract [en]

Recent pump-probe experiments demonstrate the possibility that Dirac materials may be driven into transient excited states describable by two chemical potentials, one for the electrons and one for the holes. Given the Dirac nature of the spectrum, such an inverted population allows the optical tunability of the density of states of the electrons and holes, effectively offering control of the strength of the Coulomb interaction. Here we discuss the feasibility of realizing transient excitonic instabilities in optically pumped Dirac materials. We demonstrate, theoretically, the reduction of the critical coupling leading to the formation of a transient condensate of electron-hole pairs and identify signatures of this state. Furthermore, we provide guidelines for experiments by both identifying the regimes in which such exotic many-body states are more likely to be observed and estimating the magnitude of the excitonic gap for a few important examples of existing Dirac materials. We find a set of material parameters for which our theory predicts large gaps and high critical temperatures and which could be realized in future Dirac materials. We also comment on transient excitonic instabilities in three-dimensional Dirac and Weyl semimetals. This study provides an example of a transient collective instability in driven Dirac materials.

Place, publisher, year, edition, pages
AMER PHYSICAL SOC , 2017. Vol. 95, no 20, article id 205410
National Category
Condensed Matter Physics
Identifiers
URN: urn:nbn:se:kth:diva-207884DOI: 10.1103/PhysRevB.95.205410ISI: 000400662700007OAI: oai:DiVA.org:kth-207884DiVA, id: diva2:1103572
Note

QC 20170530

Available from: 2017-05-30 Created: 2017-05-30 Last updated: 2017-11-29Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Triola, ChristopherPertsova, Anna
By organisation
Nordic Institute for Theoretical Physics NORDITA
In the same journal
Physical Review B
Condensed Matter Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 9 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf