Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Experimental strategies for imaging bioparticles with femtosecond hard X-ray pulses
Show others and affiliations
2017 (English)In: IUCrJ, ISSN 0972-6918, E-ISSN 2052-2525, Vol. 4, 251-262 p.Article in journal (Refereed) Published
Abstract [en]

This study explores the capabilities of the Coherent X-ray Imaging Instrument at the Linac Coherent Light Source to image small biological samples. The weak signal from small samples puts a significant demand on the experiment. Aerosolized Omono River virus particles of similar to 40 nm in diameter were injected into the submicrometre X-ray focus at a reduced pressure. Diffraction patterns were recorded on two area detectors. The statistical nature of the measurements from many individual particles provided information about the intensity profile of the X-ray beam, phase variations in the wavefront and the size distribution of the injected particles. The results point to a wider than expected size distribution (from similar to 35 to similar to 300 nm in diameter). This is likely to be owing to nonvolatile contaminants from larger droplets during aerosolization and droplet evaporation. The results suggest that the concentration of nonvolatile contaminants and the ratio between the volumes of the initial droplet and the sample particles is critical in such studies. The maximum beam intensity in the focus was found to be 1.9 * 10(12) photons per mu m(2) per pulse. The full-width of the focus at half-maximum was estimated to be 500 nm (assuming 20% beamline transmission), and this width is larger than expected. Under these conditions, the diffraction signal from a sample-sized particle remained above the average background to a resolution of 4.25 nm. The results suggest that reducing the size of the initial droplets during aerosolization is necessary to bring small particles into the scope of detailed structural studies with X-ray lasers.

Place, publisher, year, edition, pages
INT UNION CRYSTALLOGRAPHY , 2017. Vol. 4, 251-262 p.
Keyword [en]
X-ray diffraction, free-electron laser, flash X-ray imaging, diffraction before destruction, virus, Omono River virus, OmRV
National Category
Atom and Molecular Physics and Optics
Identifiers
URN: urn:nbn:se:kth:diva-207895DOI: 10.1107/S2052252517003591ISI: 000400460500008ScopusID: 2-s2.0-85018306872OAI: oai:DiVA.org:kth-207895DiVA: diva2:1103694
Note

QC 20170530

Available from: 2017-05-30 Created: 2017-05-30 Last updated: 2017-05-30Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Sellberg, Jonas A.
By organisation
Biomedical and X-ray Physics
In the same journal
IUCrJ
Atom and Molecular Physics and Optics

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 2 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf