Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Anisotropy constant and exchange coupling strength of perpendicularly magnetized CoFeB/Pd multilayers and exchange springs
KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.ORCID iD: 0000-0002-3513-6608
2017 (English)In: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 95, no 14, 144417Article in journal (Refereed) Published
Abstract [en]

A model describing the ferromagnetic resonance of multilayer structures is used to characterize the interface anisotropy constant and interlayer exchange coupling strength associated to individual components of [CoFeB/Pd](n) multilayers with perpendicular magnetic anisotropy and [CoFeB/Pd](5)/(CoFeB or Co) exchange spring structures by comparing with ferromagnetic resonance behavior measurements. We find that the effective perpendicular anisotropy increases with the number of repetitions of the multilayer, which we could explain only after accounting for a different anisotropy at the bottom repetition of the multilayer with perpendicular anisotropy. Similarly, the characterization of the exchange coupling in our structures was only possible after accounting for individual components, thus portraying the importance of using a multilayer model to properly describe the magnetic behavior and properties of a multilayer structure. We find that the perpendicular anisotropy constant in amorphous Pd/CoFeB/Pd structures increases slightly from 0.295 to 0.315 mJ/m(2) when increasing the thickness of the CoFeB from 3 to 4 angstrom. Furthermore, we find that the exchange coupling in CoFeB/Pd(10 A degrees)/CoFeB structures decreases from 4.899 to 3.268 mJ/m(2) when increasing the thickness of the CoFeB from 3 to 4 angstrom. Finally, we find that the magnitude of the anisotropy at Co/Pd interfaces is 65% larger than at CoFeB/Pd interfaces, and the exchange coupling at CoFeB/Pd/Co interfaces decreases approximately 30% when compared to a CoFeB/Pd/CoFeB structure.

Place, publisher, year, edition, pages
AMER PHYSICAL SOC , 2017. Vol. 95, no 14, 144417
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-207688DOI: 10.1103/PhysRevB.95.144417ISI: 000399937100002ScopusID: 2-s2.0-85017503327OAI: oai:DiVA.org:kth-207688DiVA: diva2:1104651
Note

QC 20170601

Available from: 2017-06-01 Created: 2017-06-01 Last updated: 2017-06-01Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Åkerman, Johan
By organisation
Materials- and Nano Physics
In the same journal
Physical Review B
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 1 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf