Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A core-multiple shell nanostructure enabling concurrent upconversion and quantum cutting for photon management
Show others and affiliations
2017 (English)In: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 9, no 5, 1934-1941 p.Article in journal (Refereed) Published
Abstract [en]

Photon management enables the manipulation of the number of input photons by conversion of two or more light quanta into one (upconversion) or vice versa (quantum cutting). Simultaneous realization of both these processes in a single unit provides unique opportunities of efficient utilization of photons throughout a broad spectral range. Yet, concurrent realization of these two parallel optical processes in one single unit remains elusive, limiting its impact on many existing or possible future applications such as for panchromatic photovoltaics. Here, we describe an epitaxial active core/inert shell/active shell/inert shell fluoride nanostructure to implement upconversion and quantum cutting within spatially confined and isolated rare-earth-doped active domains. The core area transforms infrared photons through trivalent erbium (Er3+) ions into three-and two-photon upconverted visible and near infrared luminescence, while the second shell domain splits an excitation photon into two near infrared photons through cooperative quantum cutting from one trivalent terbium ion (Tb3+) to two trivalent ytterbium ions (Yb3+). The inert layer in between the active domains is able to effectively suppress the destructive interference between upconversion and quantum cutting, while the outermost inert shell is able to eliminate surfacerelated quenching. This design enables the colloidal core/multishell nanoparticles to have an upconversion quantum yield of similar to 1.6%, and to have a luminescence yield of the quantum cutting process as high as similar to 130%. This work constitutes a solid step for flexible photon management in a single nanostructure, and has an implication for photonic applications beyond photovoltaics.

Place, publisher, year, edition, pages
Royal Society of Chemistry, 2017. Vol. 9, no 5, 1934-1941 p.
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-204732DOI: 10.1039/c6nr09713hISI: 000395594300022PubMedID: 28098308ScopusID: 2-s2.0-85011387426OAI: oai:DiVA.org:kth-204732DiVA: diva2:1104688
Note

QC 20170601

Available from: 2017-06-01 Created: 2017-06-01 Last updated: 2017-06-01Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMedScopus

Search in DiVA

By author/editor
Ågren, Hans
By organisation
Theoretical Chemistry and Biology
In the same journal
Nanoscale
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 6 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf