Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
RhoA knockout fibroblasts lose tumor-inhibitory capacity in vitro and promote tumor growth in vivo
Show others and affiliations
2017 (English)In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 114, no 8, E1413-E1421 p.Article in journal (Refereed) Published
Abstract [en]

Fibroblasts are a main player in the tumor-inhibitory microenvironment. Upon tumor initiation and progression, fibroblasts can lose their tumor-inhibitory capacity and promote tumor growth. The molecular mechanisms that underlie this switch have not been defined completely. Previously, we identified four proteins over-expressed in cancer-associated fibroblasts and linked to Rho GTPase signaling. Here, we show that knocking out the Ras homolog family member A (RhoA) gene in normal fibroblasts decreased their tumor-inhibitory capacity, as judged by neighbor suppression in vitro and accompanied by promotion of tumor growth in vivo. This also induced PC3 cancer cell motility and increased colony size in 2D cultures. RhoA knockout in fibroblasts induced vimentin intermediate filament reorganization, accompanied by reduced contractile force and increased stiffness of cells. There was also loss of wide F-actin stress fibers and large focal adhesions. In addition, we observed a significant loss of a-smooth muscle actin, which indicates a difference between RhoA knockout fibroblasts and classic cancer-associated fibroblasts. In 3D collagen matrix, RhoA knockout reduced fibroblast branching and meshwork formation and resulted in more compactly clustered tumor-cell colonies in coculture with PC3 cells, which might boost tumor stem-like properties. Coculturing RhoA knockout fibroblasts and PC3 cells induced expression of proinflammatory genes in both. Inflammatory mediators may induce tumor cell stemness. Network enrichment analysis of transcriptomic changes, however, revealed that the Rho signaling pathway per se was significantly triggered only after coculturing with tumor cells. Taken together, our findings in vivo and in vitro indicate that Rho signaling governs the inhibitory effects by fibroblasts on tumor-cell growth.

Place, publisher, year, edition, pages
National Academy of Sciences , 2017. Vol. 114, no 8, E1413-E1421 p.
Keyword [en]
Rho GTPases, RhoA, cancer-associated fibroblasts, tumor-inhibitory capacity, cytoskeleton
National Category
Biological Sciences
Identifiers
URN: urn:nbn:se:kth:diva-204689DOI: 10.1073/pnas.1621161114ISI: 000395099500014PubMedID: 28174275ScopusID: 2-s2.0-85013441081OAI: oai:DiVA.org:kth-204689DiVA: diva2:1105147
Funder
Science for Life Laboratory - a national resource center for high-throughput molecular bioscienceSwedish Research CouncilSwedish Cancer Society
Note

QC 20170602

Available from: 2017-06-02 Created: 2017-06-02 Last updated: 2017-06-02Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMedScopus

Search in DiVA

By author/editor
Lundberg, Emma
By organisation
Proteomics and NanobiotechnologyScience for Life Laboratory, SciLifeLab
In the same journal
Proceedings of the National Academy of Sciences of the United States of America
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 15 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf